🚀 Sambert - 希伯来语嵌入模型
Sambert 是一个基于 sentence-transformers 的模型,它能够将句子和段落映射到 768 维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
安装依赖
若要使用该模型,需要安装 sentence-transformers:
pip install -U sentence-transformers
使用示例
基础用法
使用 sentence-transformers
库调用模型:
from sentence_transformers import SentenceTransformer, util
sentences = ["אמא הלכה לגן", "אבא הלך לגן", "ירקוני קונה לנו פיצות"]
model = SentenceTransformer('MPA/sambert')
embeddings = model.encode(sentences)
print(util.cos_sim(embeddings, embeddings))
高级用法
若不使用 sentence-transformers 库,可按以下步骤操作:先将输入数据传入 Transformer 模型,再对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["אמא הלכה לגן", "אבא הלך לגן", "ירקוני קונה לנו פיצות"]
tokenizer = AutoTokenizer.from_pretrained('MPA/sambert')
model = AutoModel.from_pretrained('MPA/sambert')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
若要对该模型进行自动评估,可参考 Sentence Embeddings Benchmark:https://seb.sbert.net。
训练过程
该模型分两个阶段进行训练:
- 无监督学习:使用约 200 万个段落,在 cls 标记上采用 'MultipleNegativesRankingLoss' 损失函数。
- 有监督学习:使用约 7 万个段落,采用 'CosineSimilarityLoss' 损失函数。
模型训练的参数如下:
数据加载器
torch.utils.data.dataloader.DataLoader
,长度为 11672,参数如下:
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()
方法的参数:
{
"epochs": 1,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 500,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
引用与作者
本模型基于以下论文:
@misc{gueta2022large,
title={Large Pre-Trained Models with Extra-Large Vocabularies: A Contrastive Analysis of Hebrew BERT Models and a New One to Outperform Them All},
author={Eylon Gueta and Avi Shmidman and Shaltiel Shmidman and Cheyn Shmuel Shmidman and Joshua Guedalia and Moshe Koppel and Dan Bareket and Amit Seker and Reut Tsarfaty},
year={2022},
eprint={2211.15199},
archivePrefix={arXiv},
primaryClass={cs.CL}
}