🚀 DataikuNLP/paraphrase - MiniLM - L6 - v2
该模型是 此模型仓库 在特定提交版本 c4dfcde8a3e3e17e85cd4f0ec1925a266187f48e
下的副本,来自 sentence - transformers。它是一个 sentence - transformers 模型,可将句子和段落映射到 384 维的密集向量空间,适用于聚类或语义搜索等任务。
🚀 快速开始
本模型可通过不同方式使用,下面将分别介绍使用 sentence-transformers
库和 HuggingFace Transformers
库的使用方法。
✨ 主要特性
- 基于
sentence-transformers
框架,能够将句子和段落高效映射到 384 维的密集向量空间。
- 适用于多种自然语言处理任务,如聚类和语义搜索。
📦 安装指南
若要使用 sentence-transformers
库来调用此模型,需先安装该库:
pip install -U sentence-transformers
💻 使用示例
基础用法
使用 sentence-transformers
库
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
使用 HuggingFace Transformers
库
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
要对该模型进行自动化评估,可参考 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者
此模型由 sentence - transformers 团队训练。
若你觉得该模型有帮助,可引用我们的论文 Sentence - BERT: Sentence Embeddings using Siamese BERT - Networks:
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
📄 许可证
本模型采用 Apache - 2.0 许可证。
属性 |
详情 |
模型类型 |
sentence - transformers |
许可证 |
Apache - 2.0 |
标签 |
sentence - transformers、feature - extraction、sentence - similarity、transformers |