🚀 SBERT-base-nli-v2
这个模型被用于论文 "SGPT: GPT Sentence Embeddings for Semantic Search" 和 "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning" 中,主要用于句子相似度计算、特征提取等任务。
🚀 快速开始
若你想了解使用说明,请参考我们的代码库:https://github.com/Muennighoff/sgpt
若你想查看评估结果,请参考我们的论文:https://arxiv.org/abs/2202.08904
📦 安装指南
当你安装了 sentence-transformers 后,使用这个模型会变得很容易:
pip install -U sentence-transformers
💻 使用示例
基础用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
基础用法(HuggingFace Transformers)
如果没有安装 sentence-transformers,你可以按如下方式使用该模型:首先,将输入传递给 Transformer 模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
评估结果
若要对这个模型进行自动评估,请查看 Sentence Embeddings Benchmark:https://seb.sbert.net
🔧 技术细节
训练参数
该模型的训练参数如下:
数据加载器:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,长度为 8807,参数如下:
{'batch_size': 64}
损失函数:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,参数如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()
方法的参数:
{
"epochs": 1,
"evaluation_steps": 880,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 881,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 许可证
引用与作者
@article{muennighoff2022sgpt,
title={SGPT: GPT Sentence Embeddings for Semantic Search},
author={Muennighoff, Niklas},
journal={arXiv preprint arXiv:2202.08904},
year={2022}
}