pipeline_tag: 句子相似度
tags:
- sentence-transformers
- 特征提取
- 句子相似度
SGPT-1.3B-weightedmean-nli-bitfit
使用方法
使用说明请参考我们的代码库:https://github.com/Muennighoff/sgpt
评估结果
评估结果请查看eval文件夹或我们的论文:https://arxiv.org/abs/2202.08904
训练过程
模型训练参数如下:
数据加载器:
使用长度为93941的sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,参数为:
{'batch_size': 6}
损失函数:
采用sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,参数为:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()方法参数:
{
"epochs": 1,
"evaluation_steps": 9394,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 0.0001
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 9395,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)
引用与作者
@article{muennighoff2022sgpt,
title={SGPT: GPT Sentence Embeddings for Semantic Search},
author={Muennighoff, Niklas},
journal={arXiv preprint arXiv:2202.08904},
year={2022}
}