pipeline_tag: 句子相似度
tags:
- sentence-transformers
- 特征提取
- 句子相似度
{MODEL_NAME}
这是一个 sentence-transformers 模型:它可以将句子和段落映射到256维的稠密向量空间,可用于聚类或语义搜索等任务。
使用方法 (Sentence-Transformers)
当您安装了 sentence-transformers 后,使用此模型将变得非常简单:
pip install -U sentence-transformers
然后您可以像这样使用该模型:
from sentence_transformers import SentenceTransformer
sentences = ["这是一个示例句子", "每个句子都会被转换"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
评估结果
关于该模型的自动评估,请参阅 Sentence Embeddings Benchmark(句子嵌入基准): https://seb.sbert.net
训练过程
模型训练时使用的参数如下:
数据加载器(DataLoader):
长度为11的 torch.utils.data.dataloader.DataLoader
,其参数如下:
{'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()
方法的参数如下:
{
"epochs": 1,
"evaluation_steps": 1,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 2,
"weight_decay": 0.01
}
完整的模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
引用与作者