language: es
thumbnail: https://imgur.com/a/G77ZqQN
pipeline_tag: sentence-similarity
datasets:
- stsb_multi_mt
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
基于stsb_multi_mt西班牙语数据集微调的Distiluse-m-v2模型(语义文本相似度任务)
这是一个sentence-transformers模型(distiluse-base-multilingual-cased-v2版本):能够将句子和段落映射到768维稠密向量空间,适用于聚类或语义搜索等任务。
使用方式(Sentence-Transformers库)
安装sentence-transformers后即可便捷使用:
pip install -U sentence-transformers
调用示例:
from sentence_transformers import SentenceTransformer
sentences = ["Nerea用比特币购买画作", "可以用比特币购买艺术品"]
model = SentenceTransformer('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
embeddings = model.encode(sentences)
print(embeddings)
使用方式(HuggingFace Transformers库)
若不使用sentence-transformers,可通过以下方式调用:首先将输入传入transformer模型,然后对上下文相关的词嵌入执行正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["Nerea用比特币购买画作", "可以用比特币购买艺术品"]
tokenizer = AutoTokenizer.from_pretrained('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
model = AutoModel.from_pretrained('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入向量:")
print(sentence_embeddings)
评估方法
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
test_data = load_dataset('stsb_multi_mt', 'es', split='test')
test_data = test_data.rename_columns({'similarity_score': 'label'})
test_data = test_data.map(lambda x: {'label': x['label'] / 5.0})
samples = []
for sample in test_data:
samples.append(InputExample(
texts=[sample['sentence1'], sample['sentence2']],
label=sample['label']
))
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(
samples, write_csv=False
)
model = SentenceTransformer('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
evaluator(model)
评估结果
斯皮尔曼等级相关系数:0.7604056195656299
自动化评估请参见句子嵌入基准测试:https://seb.sbert.net
训练参数
数据加载器:
使用sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,参数为:
{'batch_size': 16}
损失函数:
采用sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,参数为:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
训练方法参数:
{
"epochs": 3,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 271,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) 内含Transformer模型: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者