pipeline_tag: 句子相似度
tags:
- sentence-transformers
- 特征提取
- 句子相似度
- transformers
dense_encoder-msmarco-distilbert-word2vec256k-MLM_785k_emb_updated
注意:词嵌入已更新!
该模型基于vocab-transformers/msmarco-distilbert-word2vec256k-MLM_785k_emb_updated,采用word2vec初始化的256k大小词汇表,并经过785k步MLM训练。
模型在MS MARCO数据集上使用MarginMSELoss进行训练。具体训练脚本参见本仓库中的train_script.py。
性能表现:
- MS MARCO开发集:35.20(MRR@10)
- TREC-DL 2019:67.61(nDCG@10)
- TREC-DL 2020:69.62(nDCG@10)
{MODEL_NAME}
这是一个sentence-transformers模型:可将句子和段落映射到768维稠密向量空间,适用于聚类或语义搜索等任务。
使用方法(Sentence-Transformers)
安装sentence-transformers后即可轻松使用:
pip install -U sentence-transformers
使用方式如下:
from sentence_transformers import SentenceTransformer
sentences = ["这是一个示例句子", "每个句子都会被转换"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
使用方法(HuggingFace Transformers)
若不使用sentence-transformers,可按以下方式操作:首先将输入传入transformer模型,然后对上下文词嵌入执行正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['这是一个示例句子', '每个句子都会被转换']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入向量:")
print(sentence_embeddings)
评估结果
如需自动化评估本模型,请访问句子嵌入基准测试:https://seb.sbert.net
训练参数
数据加载器:
长度7858的torch.utils.data.dataloader.DataLoader
,参数为:
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.MarginMSELoss.MarginMSELoss
fit()方法参数:
{
"epochs": 30,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 250, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者