pipeline_tag: 句子相似度
language:
- it
tags:
- sentence-transformers
- 特征提取
- 句子相似度
- transformers
sentence-IT5-base
这是一个sentence-transformers模型:它将句子和段落映射到一个512维的密集向量空间,可用于聚类或语义搜索等任务。该模型基于T5(IT5)基础架构,训练数据来源于问答对(squad-it)、标签/新闻文章对、标题/正文对(change-it)以及stsb数据集。
使用(Sentence-Transformers)
安装sentence-transformers后即可轻松使用该模型:
pip install -U sentence-transformers
然后按如下方式使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["这是一个示例句子", "这是另一个示例"]
model = SentenceTransformer('efederici/sentence-IT5-base')
embeddings = model.encode(sentences)
print(embeddings)
使用(HuggingFace Transformers)
若不使用sentence-transformers,可按以下方式操作:首先将输入传递给transformer模型,然后对上下文词嵌入执行正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["这是一个示例句子", "这是另一个示例"]
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-base')
model = AutoModel.from_pretrained('efederici/sentence-IT5-base')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入:")
print(sentence_embeddings)
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)