W
Wav2vec2 Large Xls R 300m Tr
由 emre 开发
该模型是基于facebook/wav2vec2-xls-r-300m在土耳其语Common Voice 8.0数据集上微调的自动语音识别(ASR)模型,测试WER为28.69%。
下载量 25
发布时间 : 3/2/2022
模型介绍
内容详情
替代品
模型简介
一个针对土耳其语优化的语音识别模型,能够将土耳其语音频转换为文本。
模型特点
土耳其语优化
专门针对土耳其语进行微调,在Common Voice土耳其语数据集上表现良好
基于wav2vec2架构
采用Facebook的wav2vec2-xls-r-300m基础模型,具有强大的语音特征提取能力
相对轻量级
300M参数的规模在保持良好性能的同时相对轻量
模型能力
土耳其语音频转文本
连续语音识别
语音内容转录
使用案例
语音转录
土耳其语语音转文字
将土耳其语的语音内容转换为可编辑的文本格式
在Common Voice测试集上达到28.69%的词错误率(WER)
语音助手
土耳其语语音指令识别
用于土耳其语语音助手或智能家居设备的语音指令识别
语言: tr
许可证: apache-2.0
标签:
- 自动语音识别
- 训练生成
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
数据集: - mozilla-foundation/common_voice_8_0
基础模型: facebook/wav2vec2-xls-r-300m
模型索引: - 名称: wav2vec2-large-xls-r-300m-tr
结果:- 任务:
类型: 自动语音识别
名称: 语音识别
数据集:
名称: Common Voice tr
类型: common_voice_8_0
参数: tr
指标:- 类型: wer
值: 28.69
名称: 测试 WER
- 类型: wer
- 任务:
wav2vec2-large-xls-r-300m-tr
该模型是基于 facebook/wav2vec2-xls-r-300m 在 MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - TR 数据集上进行微调的版本。
在评估集上取得了以下结果:
- 损失: 0.2224
- 词错误率 (WER): 0.2869
模型描述
需要更多信息
预期用途与限制
需要更多信息
训练与评估数据
需要更多信息
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率: 2e-05
- 训练批次大小: 32
- 评估批次大小: 32
- 随机种子: 42
- 优化器: Adam,参数 betas=(0.9,0.999),epsilon=1e-08
- 学习率调度器类型: linear
- 学习率预热步数: 500
- 训练轮数: 100.0
- 混合精度训练: Native AMP
训练结果
训练损失 | 轮次 | 步数 | 验证损失 | WER |
---|---|---|---|---|
6.8222 | 0.64 | 500 | 3.5026 | 1.0 |
3.2136 | 1.28 | 1000 | 3.0593 | 1.0000 |
2.8882 | 1.91 | 1500 | 2.4670 | 0.9939 |
2.3743 | 2.55 | 2000 | 1.1844 | 0.8657 |
1.9456 | 3.19 | 2500 | 0.8228 | 0.7397 |
1.7781 | 3.83 | 3000 | 0.6826 | 0.6753 |
1.6848 | 4.46 | 3500 | 0.5885 | 0.6140 |
1.6228 | 5.1 | 4000 | 0.5274 | 0.5789 |
1.5768 | 5.74 | 4500 | 0.4900 | 0.5519 |
1.5431 | 6.38 | 5000 | 0.4508 | 0.5238 |
1.5019 | 7.02 | 5500 | 0.4248 | 0.5021 |
1.4684 | 7.65 | 6000 | 0.4009 | 0.4827 |
1.4635 | 8.29 | 6500 | 0.3830 | 0.4700 |
1.4291 | 8.93 | 7000 | 0.3707 | 0.4595 |
1.4271 | 9.57 | 7500 | 0.3570 | 0.4514 |
1.3938 | 10.2 | 8000 | 0.3479 | 0.4378 |
1.3914 | 10.84 | 8500 | 0.3396 | 0.4368 |
1.3767 | 11.48 | 9000 | 0.3253 | 0.4262 |
1.3641 | 12.12 | 9500 | 0.3251 | 0.4178 |
1.355 | 12.76 | 10000 | 0.3138 | 0.4136 |
1.336 | 13.39 | 10500 | 0.3121 | 0.4069 |
1.3292 | 14.03 | 11000 | 0.3041 | 0.4014 |
1.3249 | 14.67 | 11500 | 0.3014 | 0.3931 |
1.3156 | 15.31 | 12000 | 0.3014 | 0.3929 |
1.313 | 15.94 | 12500 | 0.2969 | 0.3968 |
1.3068 | 16.58 | 13000 | 0.2965 | 0.3966 |
1.2785 | 17.22 | 13500 | 0.2943 | 0.3850 |
1.2867 | 17.86 | 14000 | 0.2912 | 0.3782 |
1.2714 | 18.49 | 14500 | 0.2819 | 0.3747 |
1.2844 | 19.13 | 15000 | 0.2840 | 0.3740 |
1.2684 | 19.77 | 15500 | 0.2913 | 0.3828 |
1.26 | 20.41 | 16000 | 0.2739 | 0.3674 |
1.2543 | 21.05 | 16500 | 0.2740 | 0.3691 |
1.2532 | 21.68 | 17000 | 0.2709 | 0.3756 |
1.2409 | 22.32 | 17500 | 0.2669 | 0.3593 |
1.2404 | 22.96 | 18000 | 0.2673 | 0.3576 |
1.2347 | 23.6 | 18500 | 0.2678 | 0.3643 |
1.2351 | 24.23 | 19000 | 0.2715 | 0.3650 |
1.2409 | 24.87 | 19500 | 0.2637 | 0.3571 |
1.2152 | 25.51 | 20000 | 0.2785 | 0.3609 |
1.2046 | 26.15 | 20500 | 0.2610 | 0.3508 |
1.2082 | 26.79 | 21000 | 0.2619 | 0.3461 |
1.2109 | 27.42 | 21500 | 0.2597 | 0.3502 |
1.2014 | 28.06 | 22000 | 0.2608 | 0.3468 |
1.1948 | 28.7 | 22500 | 0.2573 | 0.3457 |
1.205 | 29.34 | 23000 | 0.2619 | 0.3464 |
1.2019 | 29.97 | 23500 | 0.2559 | 0.3474 |
1.1917 | 30.61 | 24000 | 0.2601 | 0.3462 |
1.1939 | 31.25 | 24500 | 0.2575 | 0.3387 |
1.1882 | 31.89 | 25000 | 0.2535 | 0.3368 |
1.191 | 32.53 | 25500 | 0.2489 | 0.3365 |
1.1767 | 33.16 | 26000 | 0.2501 | 0.3347 |
1.167 | 33.8 | 26500 | 0.2504 | 0.3347 |
1.1678 | 34.44 | 27000 | 0.2480 | 0.3378 |
1.1803 | 35.08 | 27500 | 0.2487 | 0.3345 |
1.167 | 35.71 | 28000 | 0.2442 | 0.3319 |
1.1661 | 36.35 | 28500 | 0.2495 | 0.3334 |
1.164 | 36.99 | 29000 | 0.2472 | 0.3292 |
1.1578 | 37.63 | 29500 | 0.2442 | 0.3242 |
1.1584 | 38.27 | 30000 | 0.2431 | 0.3314 |
1.1526 | 38.9 | 30500 | 0.2441 | 0.3347 |
1.1542 | 39.54 | 31000 | 0.2437 | 0.3330 |
1.1508 | 40.18 | 31500 | 0.2433 | 0.3294 |
1.1406 | 40.82 | 32000 | 0.2434 | 0.3271 |
1.1514 | 41.45 | 32500 | 0.2426 | 0.3255 |
1.1418 | 42.09 | 33000 | 0.2432 | 0.3233 |
1.1365 | 42.73 | 33500 | 0.2436 | 0.3240 |
1.1348 | 43.37 | 34000 | 0.2483 | 0.3257 |
1.1301 | 44.01 | 34500 | 0.2420 | 0.3271 |
1.1268 | 44.64 | 35000 | 0.2472 | 0.3225 |
1.1224 | 45.28 | 35500 | 0.2382 | 0.3205 |
1.1224 | 45.92 | 36000 | 0.2388 | 0.3184 |
1.1198 | 46.56 | 36500 | 0.2382 | 0.3202 |
1.1274 | 47.19 | 37000 | 0.2404 | 0.3172 |
1.1147 | 47.83 | 37500 | 0.2394 | 0.3164 |
1.121 | 48.47 | 38000 | 0.2406 | 0.3202 |
1.1109 | 49.11 | 38500 | 0.2384 | 0.3154 |
1.1164 | 49.74 | 39000 | 0.2375 | 0.3169 |
1.1105 | 50.38 | 39500 | 0.2387 | 0.3173 |
1.1054 | 51.02 | 40000 | 0.2362 | 0.3120 |
1.0893 | 51.66 | 40500 | 0.2399 | 0.3130 |
1.0913 | 52.3 | 41000 | 0.2357 | 0.3088 |
1.1017 | 52.93 | 41500 | 0.2345 | 0.3084 |
1.0937 | 53.57 | 42000 | 0.2330 | 0.3140 |
1.0945 | 54.21 | 42500 | 0.2399 | 0.3107 |
1.0933 | 54.85 | 43000 | 0.2383 | 0.3134 |
1.0912 | 55.48 | 43500 | 0.2372 | 0.3077 |
1.0898 | 56.12 | 44000 | 0.2339 | 0.3083 |
1.0903 | 56.76 | 44500 | 0.2367 | 0.3065 |
1.0947 | 57.4 | 45000 | 0.2352 | 0.3104 |
1.0751 | 58.04 | 45500 | 0.2334 | 0.3084 |
1.09 | 58.67 | 46000 | 0.2328 | 0.3100 |
1.0876 | 59.31 | 46500 | 0.2276 | 0.3050 |
1.076 | 59.95 | 47000 | 0.2309 | 0.3047 |
1.086 | 60.59 | 47500 | 0.2293 | 0.3047 |
1.082 | 61.22 | 48000 | 0.2328 | 0.3027 |
1.0714 | 61.86 | 48500 | 0.2290 | 0.3020 |
1.0746 | 62.5 | 49000 | 0.2313 | 0.3059 |
1.076 | 63.14 | 49500 | 0.2342 | 0.3050 |
1.0648 | 63.78 | 50000 | 0.2286 | 0.3025 |
1.0586 | 64.41 | 50500 | 0.2338 | 0.3044 |
1.0753 | 65.05 | 51000 | 0.2308 | 0.3045 |
1.0664 | 65.69 | 51500 | 0.2273 | 0.3009 |
1.0739 | 66.33 | 52000 | 0.2298 | 0.3027 |
1.0695 | 66.96 | 52500 | 0.2247 | 0.2996 |
1.06 | 67.6 | 53000 | 0.2276 | 0.3015 |
1.0742 | 68.24 | 53500 | 0.2280 | 0.2974 |
1.0618 | 68.88 | 54000 | 0.2291 | 0.2989 |
1.062 | 69.52 | 54500 | 0.2302 | 0.2971 |
1.0572 | 70.15 | 55000 | 0.2280 | 0.2990 |
1.055 | 70.79 | 55500 | 0.2278 | 0.2983 |
1.0553 | 71.43 | 56000 | 0.2282 | 0.2991 |
1.0509 | 72.07 | 56500 | 0.2261 | 0.2959 |
1.0469 | 72.7 | 57000 | 0.2216 | 0.2919 |
1.0476 | 73.34 | 57500 | 0.2267 | 0.2989 |
1.0494 | 73.98 | 58000 | 0.2260 | 0.2960 |
1.0517 | 74.62 | 58500 | 0.2297 | 0.2989 |
1.0458 | 75.26 | 59000 | 0.2246 | 0.2923 |
1.0382 | 75.89 | 59500 | 0.2255 | 0.2922 |
1.0462 | 76.53 | 60000 | 0.2258 | 0.2954 |
1.0375 | 77.17 | 60500 | 0.2251 | 0.2929 |
1.0332 | 77.81 | 61000 | 0.2277 | 0.2940 |
1.0423 | 78.44 | 61500 | 0.2243 | 0.2896 |
1.0379 | 79.08 | 62000 | 0.2274 | 0.2928 |
1.0398 | 79.72 | 62500 | 0.2237 | 0.2928 |
1.0395 | 80.36 | 63000 | 0.2265 | 0.2956 |
1.0397 | 80.99 | 63500 | 0.2240 | 0.2920 |
1.0262 | 81.63 | 64000 | 0.2244 | 0.2934 |
1.0335 | 82.27 | 64500 | 0.2265 | 0.2936 |
1.0385 | 82.91 | 65000 | 0.2238 | 0.2928 |
1.0289 | 83.55 | 65500 | 0.2219 | 0.2912 |
1.0372 | 84.18 | 66000 | 0.2236 | 0.2898 |
1.0279 | 84.82 | 66500 | 0.2219 | 0.2902 |
1.0325 | 85.46 | 67000 | 0.2240 | 0.2908 |
1.0202 | 86.1 | 67500 | 0.2206 | 0.2886 |
1.0166 | 86.73 | 68000 | 0.2219 | 0.2886 |
1.0259 | 87.37 | 68500 | 0.2235 | 0.2897 |
1.0337 | 88.01 | 69000 | 0.2210 | 0.2873 |
1.0264 | 88.65 | 69500 | 0.2216 | 0.2882 |
1.0231 | 89.29 | 70000 | 0.2223 | 0.2899 |
1.0281 | 89.92 | 70500 | 0.2214 | 0.2872 |
1.0135 | 90.56 | 71000 | 0.2218 | 0.2868 |
1.0291 | 91.2 | 71500 | 0.2209 | 0.2863 |
1.0321 | 91.84 | 72000 | 0.2199 | 0.2876 |
1.028 | 92.47 | 72500 | 0.2214 | 0.2858 |
1.0213 | 93.11 | 73000 | 0.2219 | 0.2875 |
1.0261 | 93.75 | 73500 | 0.2232 | 0.2869 |
1.0197 | 94.39 | 74000 | 0.2227 | 0.2866 |
1.0298 | 95.03 | 74500 | 0.2228 | 0.2868 |
1.0192 | 95.66 | 75000 | 0.2230 | 0.2865 |
1.0156 | 96.3 | 75500 | 0.2220 | 0.2869 |
1.0075 | 96.94 | 76000 | 0.2223 | 0.2866 |
1.0201 | 97.58 | 76500 | 0.2219 | 0.2866 |
1.0159 | 98.21 | 77000 | 0.2219 | 0.2876 |
1.0087 | 98.85 | 77500 | 0.2219 | 0.2873 |
1.0159 | 99.49 | 78000 | 0.2223 | 0.2867 |
框架版本
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Voice Activity Detection
MIT
基于pyannote.audio 2.1版本的语音活动检测模型,用于识别音频中的语音活动时间段
语音识别
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
这是一个针对葡萄牙语语音识别任务微调的XLSR-53大模型,基于Common Voice 6.1数据集训练,支持葡萄牙语语音转文本。
语音识别
其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先进自动语音识别(ASR)和语音翻译模型,在超过500万小时的标注数据上训练,具有强大的跨数据集和跨领域泛化能力。
语音识别
支持多种语言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI开发的最先进的自动语音识别(ASR)和语音翻译模型,经过超过500万小时标记数据的训练,在零样本设置下展现出强大的泛化能力。
语音识别
Transformers

支持多种语言
W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的俄语语音识别模型,支持16kHz采样率的语音输入
语音识别
其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的中文语音识别模型,支持16kHz采样率的语音输入。
语音识别
中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的荷兰语语音识别模型,在Common Voice和CSS10数据集上训练,支持16kHz音频输入。
语音识别
其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的日语语音识别模型,支持16kHz采样率的语音输入
语音识别
日语
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基于Hugging Face预训练模型的文本与音频强制对齐工具,支持多种语言,内存效率高
语音识别
Transformers

支持多种语言
M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的阿拉伯语语音识别模型,在Common Voice和阿拉伯语语音语料库上训练
语音识别
阿拉伯语
W
jonatasgrosman
2.3M
37
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers

支持多种语言
L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers

英语
C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统
中文
R
uer
2,694
98
AIbase是一个专注于MCP服务的平台,为AI开发者提供高质量的模型上下文协议服务,助力AI应用开发。
简体中文