语言: 古吉拉特语
数据集:
- 谷歌
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
许可证: apache-2.0
模型索引:
- 名称: Jaimin的XLSR Wav2Vec2古吉拉特语模型
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: 谷歌
类型: 语音
参数: guj
指标:
- 名称: 测试WER
类型: wer
值: 28.92
wav2vec2-base-gujarati-demo
基于facebook/wav2vec2-large-xlsr-53在古吉拉特语上的微调模型。使用此模型时,请确保您的语音输入采样率为16kHz。
使用方法
该模型可以直接使用(无需语言模型)如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
common_voice_train,common_voice_test = load_dataset('csv', data_files={'train': 'train.csv','test': 'test.csv'},error_bad_lines=False,encoding='utf-8',split=['train', 'test']).
processor = Wav2Vec2Processor.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
model = Wav2Vec2ForCTC.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = common_voice_test.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测:", processor.batch_decode(predicted_ids))
print("参考:", test_dataset["sentence"][0].lower())
评估
该模型可以在Common Voice的{language}测试数据上进行如下评估。
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
common_voice_validation = load_dataset('csv', data_files={'test': 'validation.csv'},error_bad_lines=False,encoding='utf-8',split='test')
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-base-gujarati-demo")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = common_voice_validation.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = common_voice_validation.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 28.92 %
训练
训练使用了谷歌数据集。
训练脚本可以在这里找到