语言: 葡萄牙语
数据集:
- 通用语音(Common Voice)
评估指标:
- 词错误率(WER)
标签:
- 音频
- 语音
- wav2vec2
- 葡萄牙语(pt)
- Apache-2.0许可
- 葡萄牙语语音语料库
- 自动语音识别
- XLSR微调周
- PyTorch框架
许可证: Apache-2.0
模型索引:
- 名称: JoaoAlvarenga XLSR Wav2Vec2 Large 53葡萄牙语模型
成果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: 通用语音葡萄牙语版
类型: common_voice
参数: pt
指标:
- 名称: 测试词错误率
类型: wer
值: 13.766801%
Wav2Vec2-Large-XLSR-53-葡萄牙语版
本模型基于facebook/wav2vec2-large-xlsr-53架构,使用通用语音数据集的葡萄牙语数据进行微调。
使用方法
无需语言模型即可直接使用该模型:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese")
resampler = torchaudio.transforms.Resample(48000, 16000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["sentence"][:2])
评估
可通过以下方式在通用语音葡萄牙语测试集上评估模型性能:
需安装Enelvo(基于推特用户帖子的开源拼写校正工具):
pip install enelvo
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from enelvo import normaliser
import re
test_dataset = load_dataset("common_voice", "pt", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]'
resampler = torchaudio.transforms.Resample(48000, 16000)
norm = normaliser.Normaliser()
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = [norm.normalise(i) for i in processor.batch_decode(pred_ids)]
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("词错误率: {:.2f}%".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果(词错误率): 13.766801%
训练过程
使用通用语音数据集的train
和validation
子集进行训练。
训练脚本详见:
https://github.com/joaoalvarenga/wav2vec2-large-xlsr-53-portuguese/blob/main/fine-tuning.py