语言:
- gn
许可证: apache-2.0
标签:
- 自动语音识别
- 训练生成
- gn
- 鲁棒语音事件
- hf-asr排行榜
数据集:
- mozilla-foundation/common_voice_8_0
模型索引:
- 名称: wav2vec2-xls-r-300m-gn-cv8
结果:
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: Common Voice 8
类型: mozilla-foundation/common_voice_8_0
参数: pt
指标:
- 名称: 测试WER
类型: wer
值: 69.05
- 名称: 测试CER
类型: cer
值: 14.7
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: Common Voice 8.0
类型: mozilla-foundation/common_voice_8_0
参数: gn
指标:
- 名称: 测试WER
类型: wer
值: 69.05
wav2vec2-xls-r-300m-gn-cv8
该模型是基于facebook/wav2vec2-xls-r-300m在common_voice数据集上微调的版本。
在评估集上取得了以下结果:
模型描述
需要更多信息
预期用途与限制
需要更多信息
训练与评估数据
需要更多信息
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率: 0.0001
- 训练批次大小: 8
- 评估批次大小: 8
- 随机种子: 42
- 梯度累积步数: 2
- 总训练批次大小: 16
- 优化器: Adam,参数为betas=(0.9,0.999)和epsilon=1e-08
- 学习率调度器类型: 线性
- 学习率预热步数: 100
- 训练步数: 5000
- 混合精度训练: 原生AMP
训练结果
训练损失 |
周期 |
步数 |
验证损失 |
WER |
20.0601 |
5.54 |
100 |
5.1622 |
1.0 |
3.7052 |
11.11 |
200 |
3.2869 |
1.0 |
3.3275 |
16.65 |
300 |
3.2162 |
1.0 |
3.2984 |
22.22 |
400 |
3.1638 |
1.0 |
3.1111 |
27.76 |
500 |
2.5541 |
1.0 |
2.238 |
33.32 |
600 |
1.2198 |
0.9616 |
1.5284 |
38.86 |
700 |
0.9571 |
0.8593 |
1.2735 |
44.43 |
800 |
0.8719 |
0.8363 |
1.1269 |
49.97 |
900 |
0.8334 |
0.7954 |
1.0427 |
55.54 |
1000 |
0.7700 |
0.7749 |
1.0152 |
61.11 |
1100 |
0.7747 |
0.7877 |
0.943 |
66.65 |
1200 |
0.7151 |
0.7442 |
0.9132 |
72.22 |
1300 |
0.7224 |
0.7289 |
0.8397 |
77.76 |
1400 |
0.7354 |
0.7059 |
0.8577 |
83.32 |
1500 |
0.7285 |
0.7263 |
0.7931 |
88.86 |
1600 |
0.7863 |
0.7084 |
0.7995 |
94.43 |
1700 |
0.7562 |
0.6880 |
0.799 |
99.97 |
1800 |
0.7905 |
0.7059 |
0.7373 |
105.54 |
1900 |
0.7791 |
0.7161 |
0.749 |
111.11 |
2000 |
0.8125 |
0.7161 |
0.6925 |
116.65 |
2100 |
0.7722 |
0.6905 |
0.7034 |
122.22 |
2200 |
0.8989 |
0.7136 |
0.6745 |
127.76 |
2300 |
0.8270 |
0.6982 |
0.6837 |
133.32 |
2400 |
0.8569 |
0.7161 |
0.6689 |
138.86 |
2500 |
0.8339 |
0.6982 |
0.6471 |
144.43 |
2600 |
0.8441 |
0.7110 |
0.615 |
149.97 |
2700 |
0.9038 |
0.7212 |
0.6477 |
155.54 |
2800 |
0.9089 |
0.7059 |
0.6047 |
161.11 |
2900 |
0.9149 |
0.7059 |
0.5613 |
166.65 |
3000 |
0.8582 |
0.7263 |
0.6017 |
172.22 |
3100 |
0.8787 |
0.7084 |
0.5546 |
177.76 |
3200 |
0.8753 |
0.6957 |
0.5747 |
183.32 |
3300 |
0.9167 |
0.7212 |
0.5535 |
188.86 |
3400 |
0.8448 |
0.6905 |
0.5331 |
194.43 |
3500 |
0.8644 |
0.7161 |
0.5428 |
199.97 |
3600 |
0.8730 |
0.7033 |
0.5219 |
205.54 |
3700 |
0.9047 |
0.6982 |
0.5158 |
211.11 |
3800 |
0.8706 |
0.7033 |
0.5107 |
216.65 |
3900 |
0.9139 |
0.7084 |
0.4903 |
222.22 |
4000 |
0.9456 |
0.7315 |
0.4772 |
227.76 |
4100 |
0.9475 |
0.7161 |
0.4713 |
233.32 |
4200 |
0.9237 |
0.7059 |
0.4743 |
238.86 |
4300 |
0.9305 |
0.6957 |
0.4705 |
244.43 |
4400 |
0.9561 |
0.7110 |
0.4908 |
249.97 |
4500 |
0.9389 |
0.7084 |
0.4717 |
255.54 |
4600 |
0.9234 |
0.6982 |
0.4462 |
261.11 |
4700 |
0.9323 |
0.6957 |
0.4556 |
266.65 |
4800 |
0.9432 |
0.7033 |
0.4691 |
272.22 |
4900 |
0.9389 |
0.7059 |
0.4601 |
277.76 |
5000 |
0.9392 |
0.7033 |
框架版本
- Transformers 4.16.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.11.0