标签:
使用Wav2Vec 2.0进行进食声音分类
使用方法
环境要求
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
预测示例
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "m3hrdadfi/wav2vec2-base-100k-eating-sound-collection"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
path = "clips_rd/gummies/gummies_6_04.wav"
outputs = predict(path, sampling_rate)
[
{'Label': '芦荟', 'Score': '0.0%'},
{'Label': '汉堡', 'Score': '0.0%'},
{'Label': '卷心菜', 'Score': '0.0%'},
{'Label': '蜜饯', 'Score': '0.0%'},
{'Label': '胡萝卜', 'Score': '0.0%'},
{'Label': '薯片', 'Score': '0.0%'},
{'Label': '巧克力', 'Score': '0.0%'},
{'Label': '饮料', 'Score': '0.0%'},
{'Label': '薯条', 'Score': '0.0%'},
{'Label': '葡萄', 'Score': '0.0%'},
{'Label': '软糖', 'Score': '99.8%'},
{'Label': '冰淇淋', 'Score': '0.0%'},
{'Label': '果冻', 'Score': '0.1%'},
{'Label': '面条', 'Score': '0.0%'},
{'Label': '泡菜', 'Score': '0.0%'},
{'Label': '披萨', 'Score': '0.0%'},
{'Label': '肋排', 'Score': '0.0%'},
{'Label': '三文鱼', 'Score': '0.0%'},
{'Label': '汤', 'Score': '0.0%'},
{'Label': '鸡翅', 'Score': '0.0%'}
]
评估结果
下表展示了模型整体及各类别的评估分数。
类别 |
精确率 |
召回率 |
F1分数 |
样本数 |
芦荟 |
0.989 |
0.807 |
0.889 |
109 |
汉堡 |
1.000 |
0.471 |
0.640 |
119 |
卷心菜 |
0.907 |
0.970 |
0.937 |
100 |
蜜饯 |
0.952 |
0.988 |
0.970 |
161 |
胡萝卜 |
0.970 |
0.992 |
0.981 |
132 |
薯片 |
0.993 |
0.951 |
0.972 |
144 |
巧克力 |
0.828 |
0.914 |
0.869 |
58 |
饮料 |
0.982 |
0.948 |
0.965 |
58 |
薯条 |
0.935 |
0.783 |
0.852 |
129 |
葡萄 |
0.965 |
0.940 |
0.952 |
116 |
软糖 |
0.880 |
0.971 |
0.923 |
136 |
冰淇淋 |
0.953 |
0.972 |
0.962 |
145 |
果冻 |
0.906 |
0.875 |
0.890 |
88 |
面条 |
0.817 |
0.817 |
0.817 |
82 |
泡菜 |
0.933 |
0.960 |
0.946 |
174 |
披萨 |
0.704 |
0.934 |
0.803 |
122 |
肋排 |
0.796 |
0.755 |
0.775 |
98 |
三文鱼 |
0.647 |
0.970 |
0.776 |
100 |
汤 |
0.941 |
0.857 |
0.897 |
56 |
鸡翅 |
0.842 |
0.792 |
0.816 |
101 |
准确率 |
0.890 |
0.890 |
0.890 |
0 |
宏观平均 |
0.897 |
0.883 |
0.882 |
2228 |
加权平均(样本) |
0.903 |
0.890 |
0.888 |
2228 |
问题反馈?
请通过此处链接提交Github issue。