标签:
使用Wav2Vec 2.0进行音乐流派分类
使用方法
环境要求
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
预测示例
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "m3hrdadfi/wav2vec2-base-100k-voxpopuli-gtzan-music"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
path = "genres_original/disco/disco.00067.wav"
outputs = predict(path, sampling_rate)
[
{'Label': '蓝调', 'Score': '0.0%'},
{'Label': '古典', 'Score': '0.0%'},
{'Label': '乡村', 'Score': '0.0%'},
{'Label': '迪斯科', 'Score': '99.8%'},
{'Label': '嘻哈', 'Score': '0.0%'},
{'Label': '爵士', 'Score': '0.0%'},
{'Label': '金属', 'Score': '0.0%'},
{'Label': '流行', 'Score': '0.0%'},
{'Label': '雷鬼', 'Score': '0.0%'},
{'Label': '摇滚', 'Score': '0.0%'}
]
评估结果
下表展示了模型整体及各类别的评估指标。
类别 |
精确率 |
召回率 |
F1分数 |
样本数 |
蓝调 |
0.792 |
0.950 |
0.864 |
20 |
古典 |
0.864 |
0.950 |
0.905 |
20 |
乡村 |
0.812 |
0.650 |
0.722 |
20 |
迪斯科 |
0.778 |
0.700 |
0.737 |
20 |
嘻哈 |
0.933 |
0.700 |
0.800 |
20 |
爵士 |
1.000 |
0.850 |
0.919 |
20 |
金属 |
0.783 |
0.900 |
0.837 |
20 |
流行 |
0.917 |
0.550 |
0.687 |
20 |
雷鬼 |
0.543 |
0.950 |
0.691 |
20 |
摇滚 |
0.611 |
0.550 |
0.579 |
20 |
准确率 |
0.775 |
0.775 |
0.775 |
0 |
宏平均 |
0.803 |
0.775 |
0.774 |
200 |
加权平均 |
0.803 |
0.775 |
0.774 |
200 |
问题反馈?
请在此处提交GitHub issue。