这是一个基于Facebook的wav2vec2-large-xlsr-53模型微调的冰岛语自动语音识别(ASR)模型,使用Malromur数据集进行训练。
下载量 51
发布时间 : 3/2/2022
模型介绍
内容详情
替代品
模型简介
该模型专门用于冰岛语的语音识别任务,能够将冰岛语语音转换为文本。
模型特点
高准确率
在Malromur测试集上达到9.21%的词错误率(WER)
专门针对冰岛语优化
使用冰岛语特定数据集Malromur进行微调
无需语言模型
可以直接使用,不需要额外的语言模型
模型能力
冰岛语语音识别
语音转文本
使用案例
语音转录
冰岛语语音转录
将冰岛语语音内容转换为文本
准确率达到90.79%
语言: is
数据集:
- malromur
标签: - 音频
- 自动语音识别
- 语音
- xlsr-微调周
许可证: apache-2.0
小部件: - 示例标题: Malromur 样本 1608
来源: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/resolve/main/sample1608.flac - 示例标题: Malromur 样本 3860
来源: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/resolve/main/sample3860.flac
模型索引: - 名称: Mehrdad Farahani 的 XLSR Wav2Vec2 冰岛语模型
结果:- 任务:
名称: 语音识别
类型: automatic-speech-recognition
数据集:
名称: Malromur is
类型: malromur
参数: lt
指标:- 名称: 测试 WER
类型: wer
值: 09.21
- 名称: 测试 WER
- 任务:
Wav2Vec2-Large-XLSR-53-冰岛语
使用 Malromur 对 facebook/wav2vec2-large-xlsr-53 进行冰岛语微调。使用此模型时,请确保语音输入采样率为16kHz。
使用方式
该模型可以直接使用(无需语言模型)如下:
要求
# 所需包
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
!pip install num2words
标准化器
# num2word 包
# 原始来源: https://github.com/savoirfairelinux/num2words
!mkdir -p ./num2words
!wget -O num2words/__init__.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/__init__.py
!wget -O num2words/base.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/base.py
!wget -O num2words/compat.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/compat.py
!wget -O num2words/currency.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/currency.py
!wget -O num2words/lang_EU.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/lang_EU.py
!wget -O num2words/lang_IS.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/lang_IS.py
!wget -O num2words/utils.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/utils.py
# 基于性别和年龄选择的 Malromur_test
!wget -O malromur_test.csv https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/malromur_test.csv
# 标准化器
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/normalizer.py
预测
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import numpy as np
import re
import string
import IPython.display as ipd
from normalizer import Normalizer
normalizer = Normalizer(lang="is")
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic").to(device)
dataset = load_dataset("csv", data_files={"test": "./malromur_test.csv"})["test"]
dataset = dataset.map(
normalizer,
fn_kwargs={"do_lastspace_removing": True, "text_key_name": "cleaned_sentence"},
remove_columns=list(set(dataset.column_names) - set(['cleaned_sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict, batched=True, batch_size=8)
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["cleaned_sentence"][i], result["predicted"][i]
print("参考:", reference)
print("预测:", predicted)
print('---')
输出:
参考: eða eitthvað annað dýr
预测: eða eitthvað annað dýr
---
参考: oddgerður
预测: oddgerður
---
参考: eiðný
预测: eiðný
---
参考: löndum
预测: löndum
---
参考: tileinkaði bróður sínum markið
预测: tileinkaði bróður sínum markið
---
参考: þetta er svo mikill hégómi
预测: þetta er svo mikill hégómi
---
参考: timarit is
预测: timarit is
---
参考: stefna strax upp aftur
预测: stefna strax upp aftur
---
参考: brekkuflöt
预测: brekkuflöt
---
参考: áætlunarferð frestað vegna veðurs
预测: áætluna ferð frestað vegna veðurs
---
参考: sagði af sér vegna kláms
预测: sagði af sér vegni kláms
---
参考: grímúlfur
预测: grímúlgur
---
参考: lýsti sig saklausan
预测: lýsti sig saklausan
---
参考: belgingur is
预测: belgingur is
---
参考: sambía
预测: sambía
---
参考: geirastöðum
预测: geirastöðum
---
参考: varð tvisvar fyrir eigin bíl
预测: var tvisvar fyrir eigin bíl
---
参考: reykjavöllum
预测: reykjavöllum
---
参考: miklir menn eru þeir þremenningar
预测: miklir menn eru þeir þremenningar
---
参考: handverkoghonnun is
预测: handverkoghonnun is
---
评估
可以在 Malromur 的测试数据上评估模型如下:
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import numpy as np
import re
import string
from normalizer import Normalizer
normalizer = Normalizer(lang="is")
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic").to(device)
dataset = load_dataset("csv", data_files={"test": "./malromur_test.csv"})["test"]
dataset = dataset.map(
normalizer,
fn_kwargs={"do_lastspace_removing": True, "text_key_name": "cleaned_sentence"},
remove_columns=list(set(dataset.column_names) - set(['cleaned_sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict, batched=True, batch_size=8)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["cleaned_sentence"])))
测试结果:
- WER: 09.21%
训练与报告
训练使用了 Common Voice 的 train
和 validation
数据集。
训练状态可在此处查看 此处
训练脚本可在此处找到 此处
问题?
请在 Wav2Vec 仓库提交一个 Github issue。
Voice Activity Detection
MIT
基于pyannote.audio 2.1版本的语音活动检测模型,用于识别音频中的语音活动时间段
语音识别
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
这是一个针对葡萄牙语语音识别任务微调的XLSR-53大模型,基于Common Voice 6.1数据集训练,支持葡萄牙语语音转文本。
语音识别
其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先进自动语音识别(ASR)和语音翻译模型,在超过500万小时的标注数据上训练,具有强大的跨数据集和跨领域泛化能力。
语音识别
支持多种语言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI开发的最先进的自动语音识别(ASR)和语音翻译模型,经过超过500万小时标记数据的训练,在零样本设置下展现出强大的泛化能力。
语音识别
Transformers

支持多种语言
W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的俄语语音识别模型,支持16kHz采样率的语音输入
语音识别
其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的中文语音识别模型,支持16kHz采样率的语音输入。
语音识别
中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的荷兰语语音识别模型,在Common Voice和CSS10数据集上训练,支持16kHz音频输入。
语音识别
其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的日语语音识别模型,支持16kHz采样率的语音输入
语音识别
日语
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基于Hugging Face预训练模型的文本与音频强制对齐工具,支持多种语言,内存效率高
语音识别
Transformers

支持多种语言
M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的阿拉伯语语音识别模型,在Common Voice和阿拉伯语语音语料库上训练
语音识别
阿拉伯语
W
jonatasgrosman
2.3M
37
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers

支持多种语言
L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers

英语
C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统
中文
R
uer
2,694
98
AIbase是一个专注于MCP服务的平台,为AI开发者提供高质量的模型上下文协议服务,助力AI应用开发。
简体中文