语言: 希腊语 (el)
数据集:
- aesdd
标签:
- 音频
- 自动语音识别
- 语音
- 语音情感识别
许可证: apache-2.0
使用Wav2Vec 2.0进行希腊语(el)语音情感识别
使用方法
环境要求
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
预测示例
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "m3hrdadfi/wav2vec2-xlsr-greek-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
path = "/path/to/disgust.wav"
outputs = predict(path, sampling_rate)
[
{'Emotion': '愤怒', 'Score': '0.0%'},
{'Emotion': '厌恶', 'Score': '99.2%'},
{'Emotion': '恐惧', 'Score': '0.1%'},
{'Emotion': '快乐', 'Score': '0.3%'},
{'Emotion': '悲伤', 'Score': '0.5%'}
]
评估结果
下表总结了模型整体及各类别的评估分数。
情感类别 |
精确率 |
召回率 |
F1分数 |
准确率 |
愤怒 |
0.92 |
1.00 |
0.96 |
|
厌恶 |
0.85 |
0.96 |
0.90 |
|
恐惧 |
0.88 |
0.88 |
0.88 |
|
快乐 |
0.94 |
0.71 |
0.81 |
|
悲伤 |
0.96 |
1.00 |
0.98 |
|
|
|
|
总体 |
0.91 |
问题反馈?
请在此处提交Github issue。