基于Wav2Vec 2.0的波斯语(Farsi - fa)语音情感识别
使用方法
环境要求
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
预测示例
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "m3hrdadfi/wav2vec2-xlsr-persian-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
path = "/path/to/sadness.wav"
outputs = predict(path, sampling_rate)
[
{'Label': '愤怒', 'Score': '0.0%'},
{'Label': '恐惧', 'Score': '0.0%'},
{'Label': '快乐', 'Score': '0.0%'},
{'Label': '中性', 'Score': '0.0%'},
{'Label': '悲伤', 'Score': '99.9%'},
{'Label': '惊讶', 'Score': '0.0%'}
]
评估结果
下表展示了模型整体及各类别的评估指标表现。
情感类别 |
精确率 |
召回率 |
F1分数 |
准确率 |
愤怒 |
0.95 |
0.95 |
0.95 |
|
恐惧 |
0.33 |
0.17 |
0.22 |
|
快乐 |
0.69 |
0.69 |
0.69 |
|
中性 |
0.91 |
0.94 |
0.93 |
|
悲伤 |
0.92 |
0.85 |
0.88 |
|
惊讶 |
0.81 |
0.88 |
0.84 |
|
|
|
|
总体 |
0.90 |
问题反馈?
请通过此处提交Github issue。