语言: 印地语
数据集:
- openslr_hindi
- common_voice
评估指标:
- 词错误率 (WER)
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
- XLSR-印地语
许可证: Apache-2.0
模型索引:
- 名称: 微调后的印地语XLSR Wav2Vec2大模型
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
- 名称: Common Voice印地语
类型: common_voice
参数: hi
- 名称: OpenSLR印地语
URL: https://www.openslr.org/resources/103/
评估指标:
- 名称: 测试WER
类型: WER
值: 46.05
Wav2Vec2-Large-XLSR-Hindi
基于facebook/wav2vec2-large-xlsr-53模型,使用OpenSLR印地语数据集进行训练,并以Common Voice印地语测试数据集进行评估。训练所用的OpenSLR印地语数据规模为10000条,且为随机采样。为增加数据多样性,OpenSLR的训练集和测试集被合并用于训练。评估在Common Voice测试集上进行。OpenSLR数据为8kHz采样率,因此在训练时上采样至16kHz。
使用此模型时,请确保语音输入采样率为16kHz。
注:此为首次微调迭代版本。若后续实验WER有所改进,将更新此模型。
测试结果
数据集 |
WER |
Common Voice印地语测试集 |
46.055% |
使用方法
该模型可直接使用(无需语言模型),示例如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hi", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("shiwangi27/wave2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("shiwangi27/wave2vec2-large-xlsr-hindi")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset[:2]["sentence"])
评估
可通过以下方式在Common Voice印地语测试数据上评估模型:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("shiwangi27/wave2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("shiwangi27/wave2vec2-large-xlsr-hindi")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\�\।\']'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
代码
训练本模型所用的Notebook可在shiwangi27/googlecolab获取。
训练使用了修改版的run_common_voice.py脚本。