语言: 孟加拉语
数据集:
- OpenSLR
评估指标:
- 词错误率 (wer)
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
许可协议: cc-by-sa-4.0
模型索引:
- 名称: Tanmoy Sarkar的XLSR Wav2Vec2孟加拉语模型
结果:
- 任务:
名称: 语音识别
类型: automatic-speech-recognition
数据集:
名称: OpenSLR
类型: OpenSLR
参数: ben
评估指标:
- 名称: 测试词错误率
类型: wer
值: 88.58
Wav2Vec2-Large-XLSR-孟加拉语
基于facebook/wav2vec2-large-xlsr-53模型,使用包含约19.6万条语句的孟加拉语ASR训练数据集进行微调。
使用该模型时,请确保语音输入采样率为16kHz。
使用方法
数据集需从此网站下载并进行相应预处理。例如,已选择1250条测试样本。
import pandas as pd
test_dataset = pd.read_csv('utt_spk_text.tsv', sep='\\t', header=None)[60000:61250]
test_dataset.columns = ["audio_path", "__", "label"]
test_dataset = test_data.drop("__", axis=1)
def add_file_path(text):
path = "data/" + text[:2] + "/" + text + '.flac'
return path
test_dataset['audio_path'] = test_dataset['audio_path'].map(lambda x: add_file_path(x))
该模型可直接使用(无需语言模型),示例如下:
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["audio_path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["label"][:2])
评估
可在OpenSLR的孟加拉语测试数据上评估模型性能:
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["label"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("词错误率: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 88.58%
训练
训练脚本详见孟加拉语ASR微调Wav2Vec2