语言: 希腊语(el)
数据集:
- 通用语音(common_voice)
- CSS10希腊语单说话人语音数据集
评估指标:
- 词错误率(wer)
- 字符错误率(cer)
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
许可证: Apache-2.0
模型索引:
- 名称: V XLSR Wav2Vec2 Large 53 - 希腊语
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: 通用语音希腊语(el)
类型: common_voice
参数: el
指标:
- 名称: 测试词错误率
类型: wer
值: 18.996669
- 名称: 测试字符错误率
类型: cer
值: 5.781874
Wav2Vec2-Large-XLSR-53-希腊语
基于facebook/wav2vec2-large-xlsr-53模型,使用通用语音和CSS10希腊语单说话人语音数据集对希腊语进行微调。使用该模型时,请确保语音输入采样率为16kHz。
使用方法
该模型可直接使用(无需语言模型),如下所示:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "el", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek")
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测:", processor.batch_decode(predicted_ids))
print("参考:", test_dataset["sentence"][:2])
评估
可以在通用语音的希腊语测试数据上评估该模型,如下所示:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "el", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek")
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
normalize_greek_letters = {"ς": "σ"}
remove_chars_greek = {"a": "", "h": "", "n": "", "g": "", "o": "", "v": "", "e": "", "r": "", "t": "", "«": "", "»": "", "m": "", '́': '', "·": "", "’": "", '´': ""}
replacements = {**normalize_greek_letters, **remove_chars_greek}
resampler = {
48_000: torchaudio.transforms.Resample(48_000, 16_000),
44100: torchaudio.transforms.Resample(44100, 16_000),
32000: torchaudio.transforms.Resample(32000, 16_000)
}
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
for key, value in replacements.items():
batch["sentence"] = batch["sentence"].replace(key, value)
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("词错误率(WER): {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("字符错误率(CER): {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]])))
测试结果: 18.996669 %
训练过程
训练使用了通用语音的训练数据集以及全部经过文本标准化的CSS10希腊语
数据。在文本预处理阶段,字母ς
被标准化为σ
,因为这两个字母发音相同,ς
仅作为单词的结尾字符。因此,这种转换可以轻松映射到正确的听写形式。尝试去除所有字母的重音符号也显著提高了WER
。模型在没有完全收敛的情况下,轻松达到了17%
的WER。然而,后续需要更复杂的文本来修正转录。不过,语言模型应该能轻松解决这些问题。另一个可以尝试的方法是将所有ι
、η
等字母转换为单个字符,因为它们发音相同。类似地,o
和ω
也应该有助于显著改善声学模型部分,因为这些字符映射到相同的发音。但需要进一步的文本标准化处理。