语言: 格鲁吉亚语
数据集:
- 通用语音(Common Voice)
评估指标:
- 词错误率(WER)
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
许可证: Apache-2.0
模型索引:
- 名称: 针对格鲁吉亚语微调的XLSR Wav2Vec模型
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: Common Voice ka
类型: common_voice
参数: ka
指标:
- 名称: 测试集词错误率
类型: wer
值: 45.28
Wav2Vec2-Large-XLSR-53-格鲁吉亚语版
本模型基于facebook/wav2vec2-large-xlsr-53使用通用语音数据集对格鲁吉亚语进行微调。使用时请确保语音输入采样率为16kHz。
使用方法
该模型可直接使用(无需语言模型),示例如下:
import librosa
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ka", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
resampler = lambda sampling_rate, y: librosa.resample(y.numpy().squeeze(), sampling_rate, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["sentence"][:2])
评估
可通过以下方式在通用语音数据集的格鲁吉亚语测试集上评估模型:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import librosa
test_dataset = load_dataset("common_voice", "ka", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
resampler = lambda sampling_rate, y: librosa.resample(y.numpy().squeeze(), sampling_rate, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("词错误率: {:.2f}%".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 45.28%
训练过程
训练使用了通用语音数据集的train
和validation
子集。训练脚本详见此处