语言: 英语
数据集:
- 通用语音
- Mozilla基金会/common_voice_6_0
评估指标:
- 词错误率(WER)
- 字错误率(CER)
标签:
- 音频
- 自动语音识别
- 英语
- HF-ASR排行榜
- Mozilla基金会/common_voice_6_0
- 鲁棒语音事件
- 语音
- XLSR微调周
许可证: Apache-2.0
模型索引:
- 名称: Jonatas Grosman的XLSR Wav2Vec2英语模型
结果:
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: 通用语音英语
类型: common_voice
参数: en
指标:
- 名称: 测试WER
类型: wer
值: 19.06
- 名称: 测试CER
类型: cer
值: 7.69
- 名称: 测试WER (+语言模型)
类型: wer
值: 14.81
- 名称: 测试CER (+语言模型)
类型: cer
值: 6.84
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: 鲁棒语音事件 - 开发数据
类型: speech-recognition-community-v2/dev_data
参数: en
指标:
- 名称: 开发WER
类型: wer
值: 27.72
- 名称: 开发CER
类型: cer
值: 11.65
- 名称: 开发WER (+语言模型)
类型: wer
值: 20.85
- 名称: 开发CER (+语言模型)
类型: cer
值: 11.01
Wav2Vec2-Large-XLSR-53-英语
基于facebook/wav2vec2-large-xlsr-53在英语通用语音数据集上的微调模型。使用该模型时,请确保语音输入采样率为16kHz。
本模型的微调得益于OVHcloud慷慨提供的GPU算力资源 :)
训练脚本详见: https://github.com/jonatasgrosman/wav2vec2-sprint
使用方式
该模型可直接使用(无需语言模型),如下所示...
使用HuggingSound库:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
自行编写推理脚本:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "en"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("参考文本:", test_dataset[i]["sentence"])
print("预测结果:", predicted_sentence)
参考文本 |
预测结果 |
"SHE'LL BE ALL RIGHT." |
SHE'LL BE ALL RIGHT |
SIX |
SIX |
"ALL'S WELL THAT ENDS WELL." |
ALL AS WELL THAT ENDS WELL |
DO YOU MEAN IT? |
DO YOU MEAN IT |
THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. |
THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION |
HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? |
HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q |
"I GUESS YOU MUST THINK I'M KINDA BATTY." |
RUSTIAN WASTIN PAN ONTE BATTLY |
NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? |
NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. |
SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER |
GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. |
GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |
评估
- 在
mozilla-foundation/common_voice_6_0
的test
集上评估
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset mozilla-foundation/common_voice_6_0 --config en --split test
- 在
speech-recognition-community-v2/dev_data
上评估
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0
引用
如需引用该模型,请使用:
@misc{grosman2021wav2vec2-large-xlsr-53-english,
title={Jonatas Grosman的XLSR Wav2Vec2英语模型},
author={Grosman, Jonatas},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english}},
year={2021}
}