语言: 中文
数据集:
- aishell1
评估指标:
- wer
标签:
- 音频
- 自动语音识别
- 语音
- xlsr微调周
许可证: apache-2.0
模型索引:
- 名称: XLSR Wav2Vec2 Large 53 - 中文 (zh-CN), 作者 Yue Qin
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: AISHELL-1 zh-CN
类型: aishell1
参数: zh-CN
指标:
- 名称: 测试 WER
类型: wer
值: 7.04
Wav2Vec2-Large-XLSR-53-中文-zh-CN-aishell1
基于facebook/wav2vec2-large-xlsr-53在中文AISHELL-1数据集上微调。
使用该模型时,请确保语音输入采样率为16kHz。
使用方法
该模型可直接使用(无需语言模型),如下所示:
import torch
import librosa
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
device = "cuda:0" if torch.cuda.is_available() else "cpu"
processor = Wav2Vec2Processor.from_pretrained(
'qinyue/wav2vec2-large-xlsr-53-chinese-zn-cn-aishell1')
model = Wav2Vec2ForCTC.from_pretrained(
'qinyue/wav2vec2-large-xlsr-53-chinese-zn-cn-aishell1').to(device)
filepath = 'test.wav'
audio, sr = librosa.load(filepath, sr=16000, mono=True)
inputs = processor(audio, sample_rate=16000, return_tensors="pt").to(device)
with torch.no_grad():
logits = model(inputs.input_values,
attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
pred_str = processor.decode(predicted_ids[0])
print(pred_str)
评估
wer_metric = load_metric("wer")
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids, spaces_between_special_tokens=True)
label_str = processor.batch_decode(pred.label_ids, group_tokens=False, spaces_between_special_tokens=True)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
结果
参考文本 |
预测文本 |
据 伟 业 我 爱 我 家 市 场 研 究 院 测 算 |
据 北 业 我 爱 我 家 市 场 研 究 院 测 算 |
七 月 北 京 公 积 金 贷 款 成 交 量 提 升 了 百 分 之 五 |
七 月 北 京 公 积 金 贷 款 成 交 量 提 升 了 百 分 之 五 |
培 育 门 类 丰 富 层 次 齐 用 的 综 合 利 用 产 业 |
培 育 门 类 丰 富 层 资 集 业 的 综 合 利 用 产 业 |
我 们 迎 来 了 赶 超 发 达 国 家 的 难 得 机 遇 |
我 们 迎 来 了 赶 超 发 达 国 家 的 单 得 机 遇 |
坚 持 基 本 草 原 保 护 制 度 |
坚 持 基 本 草 员 保 护 制 度 |
强 化 水 生 生 态 修 复 和 建 设 |
强 化 水 生 生 态 修 复 和 建 设 |
温 州 两 男 子 为 争 女 人 驾 奔 驰 宝 马 街 头 四 次 对 撞 |
温 州 两 男 子 为 争 女 人 架 奔 驰 宝 马 接 头 四 次 对 重 |
她 表 示 应 该 是 吃 吃 饭 看 电 影 之 类 的 |
他 表 示 一 的 是 吃 吃 饭 看 电 影 之 理 |
加 强 畜 禽 遗 传 资 源 和 农 业 野 生 植 物 资 源 保 护 |
加 强 续 紧 遗 传 资 源 和 农 业 野 生 职 物 资 源 保 护 |
两 人 都 是 依 赖 电 话 沟 通 |
两 人 都 是 依 赖 电 话 沟 通 |
测试结果:
下表展示了模型在AISHELL-1测试集上的词错误率(WER)。
模型 |
WER |
带语言模型的WER |
qinyue/wav2vec2-large-xlsr-53-chinese-zn-cn-aishell1 |
7.04% |
3.96% |