Ola Video
O
Ola Video
由 THUdyh 开发
Ola-7B是由腾讯、清华大学和南洋理工大学联合开发的多模态语言模型,基于Qwen2.5架构,支持文本、图像、视频和音频输入,输出文本内容。
下载量 82
发布时间 : 2/20/2025
模型简介
Ola-7B是一种按需解决方案,能够无缝高效地处理任意空间尺寸和时间长度的视觉输入,支持32K tokens的上下文窗口。
模型特点
多模态输入支持
能够同时接收图像/视频、文本和音频作为输入,并输出文本内容。
长上下文窗口
支持32K tokens的上下文窗口,适合处理长文本和多轮对话。
高效视觉处理
能够无缝高效地处理任意空间尺寸和时间长度的视觉输入。
模型能力
文本生成
图像分析
视频理解
语音识别
多模态推理
使用案例
多媒体内容理解
视频内容描述
分析视频内容并生成详细的文本描述。
多模态问答
基于图像/视频和音频输入的复杂问答任务。
智能助手
多模态对话
支持结合视觉和语音输入的智能对话系统。
🚀 Ola-7B
Ola-7B 模型由来自腾讯、清华大学和南洋理工大学的人员联合开发。它基于 Qwen2.5 语言模型,在文本、图像、视频和音频数据上进行训练,上下文窗口可达 32K 个标记。该模型能够接受图像、视频、文本和音频作为输入,并输出文本。Ola 提供了一种按需解决方案,可无缝高效地处理任意空间大小和时间长度的视觉输入。
🚀 快速开始
模型使用步骤
- 从 https://huggingface.co/THUdyh/Ola_speech_encoders 下载语音编码器。
- 将
config.json
中的路径替换为语音编码器的本地路径。
我们提供了一个简单的模型生成流程,更多详细信息请参考我们的 Github 仓库。
💻 使用示例
基础用法
import os
os.environ['LOWRES_RESIZE'] = '384x32'
os.environ['HIGHRES_BASE'] = '0x32'
os.environ['VIDEO_RESIZE'] = "0x64"
os.environ['VIDEO_MAXRES'] = "480"
os.environ['VIDEO_MINRES'] = "288"
os.environ['MAXRES'] = '1536'
os.environ['MINRES'] = '0'
os.environ['REGIONAL_POOL'] = '2x'
os.environ['FORCE_NO_DOWNSAMPLE'] = '1'
os.environ['LOAD_VISION_EARLY'] = '1'
os.environ['SKIP_LOAD_VIT'] = '1'
import gradio as gr
import torch
import re
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import transformers
import moviepy.editor as mp
from typing import Dict, Optional, Sequence, List
import librosa
import whisper
from ola.conversation import conv_templates, SeparatorStyle
from ola.model.builder import load_pretrained_model
from ola.utils import disable_torch_init
from ola.datasets.preprocess import tokenizer_image_token, tokenizer_speech_image_token, tokenizer_speech_question_image_token
from ola.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video, process_anyres_highres_image_genli
from ola.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN
model_path = ""
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None)
model = model.to('cuda').eval()
model = model.bfloat16()
USE_SPEECH=False
cur_dir = os.path.dirname(os.path.abspath(__file__))
def load_audio(audio_file_name):
speech_wav, samplerate = librosa.load(audio_file_name, sr=16000)
if len(speech_wav.shape) > 1:
speech_wav = speech_wav[:, 0]
speech_wav = speech_wav.astype(np.float32)
CHUNK_LIM = 480000
SAMPLE_RATE = 16000
speechs = []
speech_wavs = []
if len(speech_wav) <= CHUNK_LIM:
speech = whisper.pad_or_trim(speech_wav)
speech_wav = whisper.pad_or_trim(speech_wav)
speechs.append(speech)
speech_wavs.append(torch.from_numpy(speech_wav).unsqueeze(0))
else:
for i in range(0, len(speech_wav), CHUNK_LIM):
chunk = speech_wav[i : i + CHUNK_LIM]
if len(chunk) < CHUNK_LIM:
chunk = whisper.pad_or_trim(chunk)
speechs.append(chunk)
speech_wavs.append(torch.from_numpy(chunk).unsqueeze(0))
mels = []
for chunk in speechs:
chunk = whisper.log_mel_spectrogram(chunk, n_mels=128).permute(1, 0).unsqueeze(0)
mels.append(chunk)
mels = torch.cat(mels, dim=0)
speech_wavs = torch.cat(speech_wavs, dim=0)
if mels.shape[0] > 25:
mels = mels[:25]
speech_wavs = speech_wavs[:25]
speech_length = torch.LongTensor([mels.shape[1]] * mels.shape[0])
speech_chunks = torch.LongTensor([mels.shape[0]])
return mels, speech_length, speech_chunks, speech_wavs
def extract_audio(videos_file_path):
my_clip = mp.VideoFileClip(videos_file_path)
return my_clip.audio
def ola_inference(multimodal, audio_path):
visual, text = multimodal["files"][0], multimodal["text"]
if visual.endswith("image2.png"):
modality = "video"
visual = f"{cur_dir}/case/case1.mp4"
if visual.endswith(".mp4"):
modality = "video"
else:
modality = "image"
# input audio and video, do not parse audio in the video, else parse audio in the video
if audio_path:
USE_SPEECH = True
elif modality == "video":
USE_SPEECH = True
else:
USE_SPEECH = False
speechs = []
speech_lengths = []
speech_wavs = []
speech_chunks = []
if modality == "video":
vr = VideoReader(visual, ctx=cpu(0))
total_frame_num = len(vr)
fps = round(vr.get_avg_fps())
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
spare_frames = vr.get_batch(frame_idx).asnumpy()
video = [Image.fromarray(frame) for frame in spare_frames]
else:
image = [Image.open(visual)]
image_sizes = [image[0].size]
if USE_SPEECH and audio_path:
audio_path = audio_path
speech, speech_length, speech_chunk, speech_wav = load_audio(audio_path)
speechs.append(speech.bfloat16().to('cuda'))
speech_lengths.append(speech_length.to('cuda'))
speech_chunks.append(speech_chunk.to('cuda'))
speech_wavs.append(speech_wav.to('cuda'))
print('load audio')
elif USE_SPEECH and not audio_path:
# parse audio in the video
audio = extract_audio(visual)
audio.write_audiofile("./video_audio.wav")
video_audio_path = './video_audio.wav'
speech, speech_length, speech_chunk, speech_wav = load_audio(video_audio_path)
speechs.append(speech.bfloat16().to('cuda'))
speech_lengths.append(speech_length.to('cuda'))
speech_chunks.append(speech_chunk.to('cuda'))
speech_wavs.append(speech_wav.to('cuda'))
else:
speechs = [torch.zeros(1, 3000, 128).bfloat16().to('cuda')]
speech_lengths = [torch.LongTensor([3000]).to('cuda')]
speech_wavs = [torch.zeros([1, 480000]).to('cuda')]
speech_chunks = [torch.LongTensor([1]).to('cuda')]
conv_mode = "qwen_1_5"
if text:
qs = text
else:
qs = ''
if USE_SPEECH and audio_path:
qs = DEFAULT_IMAGE_TOKEN + "\n" + "User's question in speech: " + DEFAULT_SPEECH_TOKEN + '\n'
elif USE_SPEECH:
qs = DEFAULT_SPEECH_TOKEN + DEFAULT_IMAGE_TOKEN + "\n" + qs
else:
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if USE_SPEECH and audio_path:
input_ids = tokenizer_speech_question_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
elif USE_SPEECH:
input_ids = tokenizer_speech_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
else:
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
if modality == "video":
video_processed = []
for idx, frame in enumerate(video):
image_processor.do_resize = False
image_processor.do_center_crop = False
frame = process_anyres_video(frame, image_processor)
if frame_idx is not None and idx in frame_idx:
video_processed.append(frame.unsqueeze(0))
elif frame_idx is None:
video_processed.append(frame.unsqueeze(0))
if frame_idx is None:
frame_idx = np.arange(0, len(video_processed), dtype=int).tolist()
video_processed = torch.cat(video_processed, dim=0).bfloat16().to("cuda")
video_processed = (video_processed, video_processed)
video_data = (video_processed, (384, 384), "video")
else:
image_processor.do_resize = False
image_processor.do_center_crop = False
image_tensor, image_highres_tensor = [], []
for visual in image:
image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, image_processor)
image_tensor.append(image_tensor_)
image_highres_tensor.append(image_highres_tensor_)
if all(x.shape == image_tensor[0].shape for x in image_tensor):
image_tensor = torch.stack(image_tensor, dim=0)
if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor):
image_highres_tensor = torch.stack(image_highres_tensor, dim=0)
if type(image_tensor) is list:
image_tensor = [_image.bfloat16().to("cuda") for _image in image_tensor]
else:
image_tensor = image_tensor.bfloat16().to("cuda")
if type(image_highres_tensor) is list:
image_highres_tensor = [_image.bfloat16().to("cuda") for _image in image_highres_tensor]
else:
image_highres_tensor = image_highres_tensor.bfloat16().to("cuda")
pad_token_ids = 151643
attention_masks = input_ids.ne(pad_token_ids).long().to('cuda')
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
gen_kwargs = {}
if "max_new_tokens" not in gen_kwargs:
gen_kwargs["max_new_tokens"] = 1024
if "temperature" not in gen_kwargs:
gen_kwargs["temperature"] = 0.2
if "top_p" not in gen_kwargs:
gen_kwargs["top_p"] = None
if "num_beams" not in gen_kwargs:
gen_kwargs["num_beams"] = 1
with torch.inference_mode():
if modality == "video":
output_ids = model.generate(
inputs=input_ids,
images=video_data[0][0],
images_highres=video_data[0][1],
modalities=video_data[2],
speech=speechs,
speech_lengths=speech_lengths,
speech_chunks=speech_chunks,
speech_wav=speech_wavs,
attention_mask=attention_masks,
use_cache=True,
stopping_criteria=[stopping_criteria],
do_sample=True if gen_kwargs["temperature"] > 0 else False,
temperature=gen_kwargs["temperature"],
top_p=gen_kwargs["top_p"],
num_beams=gen_kwargs["num_beams"],
max_new_tokens=gen_kwargs["max_new_tokens"],
)
else:
output_ids = model.generate(
inputs=input_ids,
images=image_tensor,
images_highres=image_highres_tensor,
image_sizes=image_sizes,
modalities=['image'],
speech=speechs,
speech_lengths=speech_lengths,
speech_chunks=speech_chunks,
speech_wav=speech_wavs,
attention_mask=attention_masks,
use_cache=True,
stopping_criteria=[stopping_criteria],
do_sample=True if gen_kwargs["temperature"] > 0 else False,
temperature=gen_kwargs["temperature"],
top_p=gen_kwargs["top_p"],
num_beams=gen_kwargs["num_beams"],
max_new_tokens=gen_kwargs["max_new_tokens"],
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
return outputs, None
🔧 技术细节
模型架构
- 架构:预训练的 Oryx-ViT + Qwen2.5-7B
- 数据:超过 500 万的图像、视频和音频数据的混合,分 3 个阶段进行训练。
- 精度:BFloat16
硬件与软件
- 硬件:64 * NVIDIA Tesla A100
- 编排:HuggingFace Trainer
- 代码:Pytorch
📄 许可证
本模型采用 Apache-2.0 许可证。
📚 引用
@article{liu2025ola,
title={Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment},
author={Liu, Zuyan and Dong, Yuhao and Wang, Jiahui and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming},
journal={arXiv preprint arXiv:2502.04328},
year={2025}
}
📦 模型信息
属性 | 详情 |
---|---|
模型类型 | 多模态语言模型 |
支持语言 | 英文、中文 |
训练数据集 | HuggingFaceFV/finevideo |
基础模型 | Qwen/Qwen2.5-7B-Instruct |
仓库地址 | https://github.com/Ola-Omni/Ola |
论文地址 | https://huggingface.co/papers/2502.04328 |
Cosmos Reason1 7B
其他
Cosmos-Reason1是NVIDIA开发的物理AI模型,能够理解物理常识并通过长链思维推理生成具身决策。
文本生成文本
Transformers 英语

C
nvidia
18.56k
72
Llava 1.5 7b Llara D Inbc Aux B VIMA 80k
Apache-2.0
LLaRA是一个开源视觉运动策略模型,通过微调LLaVA-7b-v1.5在指令跟随数据和辅助数据集上训练而成,主要用于机器人技术研究。
文本生成文本
Transformers

L
variante
390
2
Anon
Apache-2.0
基于lmms-lab/llava-onevision-qwen2-7b-ov模型微调的版本,支持视频文本到文本的转换任务。
文本生成文本
Safetensors 英语
A
aiden200
361
0
Smolvlm2 2.2B Instruct GGUF
Apache-2.0
SmolVLM2-2.2B-Instruct 是一个2.2B参数量的视觉语言模型,专注于视频文本转文本任务,支持英语。
文本生成文本 英语
S
mradermacher
235
0
Ola Video
Apache-2.0
Ola-7B是由腾讯、清华大学和南洋理工大学联合开发的多模态语言模型,基于Qwen2.5架构,支持文本、图像、视频和音频输入,输出文本内容。
文本生成文本
Safetensors 支持多种语言
O
THUdyh
82
1
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98
智启未来,您的人工智能解决方案智库
简体中文