许可证: cc-by-nc-sa-4.0
标签:
- 训练生成
模型索引:
- 名称: layoutlmv2-base-uncased_finetuned_docvqa
结果: []
layoutlmv2-base-uncased_finetuned_docvqa
该模型是基于microsoft/layoutlmv2-base-uncased在未指定数据集上微调的版本。在评估集上取得如下结果:
模型描述
需补充更多信息
预期用途与限制
需补充更多信息
训练与评估数据
需补充更多信息
训练流程
训练超参数
训练过程中使用的超参数如下:
- 学习率: 5e-05
- 训练批次大小: 4
- 评估批次大小: 8
- 随机种子: 42
- 优化器: Adam(beta1=0.9,beta2=0.999,epsilon=1e-08)
- 学习率调度器类型: 线性
- 训练轮次: 20
训练结果
训练损失 |
训练轮次 |
步数 |
验证损失 |
5.3379 |
0.22 |
50 |
4.6257 |
4.4305 |
0.44 |
100 |
4.2230 |
4.0588 |
0.66 |
150 |
3.9539 |
3.7822 |
0.88 |
200 |
3.7040 |
3.4957 |
1.11 |
250 |
3.4754 |
3.2417 |
1.33 |
300 |
3.1954 |
2.8607 |
1.55 |
350 |
2.8809 |
2.6602 |
1.77 |
400 |
2.9741 |
2.621 |
1.99 |
450 |
2.8658 |
2.1733 |
2.21 |
500 |
2.7248 |
2.106 |
2.43 |
550 |
2.4072 |
1.8389 |
2.65 |
600 |
2.4147 |
1.7862 |
2.88 |
650 |
2.2116 |
1.4224 |
3.1 |
700 |
2.4379 |
1.4773 |
3.32 |
750 |
2.4346 |
1.2225 |
3.54 |
800 |
2.5779 |
1.5368 |
3.76 |
850 |
2.4343 |
1.479 |
3.98 |
900 |
2.1432 |
0.7982 |
4.2 |
950 |
2.5897 |
0.8336 |
4.42 |
1000 |
2.8477 |
1.0647 |
4.65 |
1050 |
2.7111 |
0.8795 |
4.87 |
1100 |
2.5601 |
0.9265 |
5.09 |
1150 |
2.9547 |
0.7111 |
5.31 |
1200 |
3.1621 |
0.7244 |
5.53 |
1250 |
2.7862 |
0.9501 |
5.75 |
1300 |
2.4007 |
0.7424 |
5.97 |
1350 |
2.9918 |
0.4422 |
6.19 |
1400 |
3.5247 |
0.5952 |
6.42 |
1450 |
2.8743 |
0.7173 |
6.64 |
1500 |
2.7440 |
0.6311 |
6.86 |
1550 |
2.9658 |
0.393 |
7.08 |
1600 |
3.0994 |
0.3655 |
7.3 |
1650 |
3.3074 |
0.3432 |
7.52 |
1700 |
3.1921 |
0.5986 |
7.74 |
1750 |
3.3517 |
0.5456 |
7.96 |
1800 |
3.1552 |
0.565 |
8.19 |
1850 |
2.9922 |
0.3902 |
8.41 |
1900 |
3.6814 |
0.3408 |
8.63 |
1950 |
3.2820 |
0.241 |
8.85 |
2000 |
3.5644 |
0.3172 |
9.07 |
2050 |
3.4752 |
0.294 |
9.29 |
2100 |
3.7023 |
0.2993 |
9.51 |
2150 |
3.5031 |
0.0928 |
9.73 |
2200 |
4.0305 |
0.4598 |
9.96 |
2250 |
3.4260 |
0.2795 |
10.18 |
2300 |
3.2730 |
0.0887 |
10.4 |
2350 |
3.7174 |
0.3682 |
10.62 |
2400 |
3.4060 |
0.1924 |
10.84 |
2450 |
4.1368 |
0.1825 |
11.06 |
2500 |
4.1640 |
0.1987 |
11.28 |
2550 |
3.9908 |
0.0875 |
11.5 |
2600 |
4.1872 |
0.1719 |
11.73 |
2650 |
3.9948 |
0.2844 |
11.95 |
2700 |
4.1731 |
0.1085 |
12.17 |
2750 |
3.9568 |
0.1496 |
12.39 |
2800 |
3.9272 |
0.0701 |
12.61 |
2850 |
4.2957 |
0.1617 |
12.83 |
2900 |
4.2806 |
0.0934 |
13.05 |
2950 |
4.3200 |
0.0405 |
13.27 |
3000 |
4.1869 |
0.0898 |
13.5 |
3050 |
4.1207 |
0.189 |
13.72 |
3100 |
4.4437 |
0.0798 |
13.94 |
3150 |
4.6480 |
0.1199 |
14.16 |
3200 |
4.4105 |
0.0922 |
14.38 |
3250 |
4.4321 |
0.1556 |
14.6 |
3300 |
4.3353 |
0.1933 |
14.82 |
3350 |
4.0635 |
0.0164 |
15.04 |
3400 |
4.1792 |
0.064 |
15.27 |
3450 |
4.2202 |
0.0914 |
15.49 |
3500 |
4.2382 |
0.0287 |
15.71 |
3550 |
4.4255 |
0.1054 |
15.93 |
3600 |
4.5788 |
0.0306 |
16.15 |
3650 |
4.7566 |
0.0297 |
16.37 |
3700 |
4.6610 |
0.0529 |
16.59 |
3750 |
4.6494 |
0.0729 |
16.81 |
3800 |
4.6314 |
0.0388 |
17.04 |
3850 |
4.6675 |
0.0207 |
17.26 |
3900 |
4.7816 |
0.0889 |
17.48 |
3950 |
4.6941 |
0.0058 |
17.7 |
4000 |
4.6818 |
0.0068 |
17.92 |
4050 |
4.7755 |
0.0222 |
18.14 |
4100 |
4.7658 |
0.1152 |
18.36 |
4150 |
4.8247 |
0.0181 |
18.58 |
4200 |
4.8290 |
0.0349 |
18.81 |
4250 |
4.7989 |
0.0165 |
19.03 |
4300 |
4.8208 |
0.029 |
19.25 |
4350 |
4.8401 |
0.0073 |
19.47 |
4400 |
4.8544 |
0.0277 |
19.69 |
4450 |
4.8356 |
0.0164 |
19.91 |
4500 |
4.8430 |
框架版本
- Transformers 4.27.4
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.2