标签:
- 图像转文本
- 图像描述生成
许可证: apache-2.0
演示样例:
- 图片: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
示例标题: 热带草原
- 图片: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
示例标题: 足球比赛
- 图片: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
示例标题: 机场
nlpconnect/vit-gpt2-image-captioning
这是由@ydshieh在flax中训练的图片描述生成模型,此版本为该模型的PyTorch实现。
使用transformers实现图像描述生成图解

- 原文链接: https://ankur3107.github.io/blogs/the-illustrated-image-captioning-using-transformers/
示例运行代码
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image_paths):
images = []
for image_path in image_paths:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
predict_step(['doctor.e16ba4e4.jpg'])
使用transformers流水线的示例代码
from transformers import pipeline
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png")
获取帮助联系方式
- 个人主页: https://huggingface.co/ankur310794
- 推特: https://twitter.com/ankur310794
- GitHub: http://github.com/ankur3107
- 领英: https://www.linkedin.com/in/ankur310794