Internvl3 38B Hf
模型简介
InternVL3-38B是一个多模态大语言模型,支持图像、视频和文本的联合处理,具备强大的多模态推理能力。
模型特点
先进的多模态能力
相比前代模型,在多模态感知和推理能力上有显著提升,支持工具使用、GUI代理、工业图像分析、3D视觉感知等领域。
高效的批量推理
作为原生的Transformers模型,支持多种注意力机制的实现(包括SDPA和FA2),并能高效地处理包含图像、视频和文本的批量输入。
多语言支持
支持多种语言,适用于不同地区的用户。
模型能力
图像描述生成
视频内容理解
多模态推理
工具使用
GUI代理
工业图像分析
3D视觉感知
文本生成
使用案例
图像理解
图像描述生成
对输入的图像生成详细的描述。
生成准确且详细的图像描述。
视频理解
视频内容分析
对输入的视频内容进行分析和描述。
准确识别视频中的动作和内容。
多模态交互
多模态聊天
支持图像、视频和文本的联合输入和交互。
实现自然的多模态对话。
🚀 InternVL3-38B Transformers 🤗 实现
InternVL3-38B是一个先进的多模态大语言模型(MLLM),相比InternVL 2.5,它在多模态感知和推理能力上有显著提升,还拓展了多模态能力,涵盖工具使用、GUI代理、工业图像分析、3D视觉感知等领域。
🚀 快速开始
本仓库包含了 OpenGVLab/InternVL3-38B 模型的Hugging Face 🤗 Transformers实现。它在功能上与原始的OpenGVLab版本等效,作为一个原生的Transformers模型,它支持核心库的各种特性,如多种注意力机制的实现(包括SDPA和FA2),并能高效地处理包含图像、视频和文本的批量输入。
你可以通过以下链接获取更多信息:
- 📜 InternVL 1.0
- 📜 InternVL 1.5
- 📜 InternVL 2.5
- 📜 InternVL2.5-MPO
- 📜 InternVL3
- 🆕 Blog
- 🗨️ Chat Demo
- 🤗 HF Demo
- 🚀 快速开始
- 📖 文档

✨ 主要特性
- 先进的多模态能力:相比InternVL 2.5,InternVL3展现出更卓越的多模态感知和推理能力,并且进一步拓展了多模态能力,涵盖工具使用、GUI代理、工业图像分析、3D视觉感知等领域。
- 高效的批量推理:作为原生的Transformers模型,支持核心库的各种特性,如多种注意力机制的实现(包括SDPA和FA2),并能高效地处理包含图像、视频和文本的批量输入。
- 多语言支持:支持多种语言,适用于不同地区的用户。
💻 使用示例
基础用法
使用Pipeline进行推理
以下是如何使用 image-text-to-text
管道对 InternVL3
模型进行推理的示例代码:
>>> from transformers import pipeline
>>> messages = [
... {
... "role": "user",
... "content": [
... {
... "type": "image",
... "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg",
... },
... {"type": "text", "text": "Describe this image."},
... ],
... },
... ]
>>> pipe = pipeline("image-text-to-text", model="OpenGVLab/InternVL3-38B-hf")
>>> outputs = pipe(text=messages, max_new_tokens=50, return_full_text=False)
>>> outputs[0]["generated_text"]
'The image showcases a vibrant scene of nature, featuring several flowers and a bee. \n\n1. **Foreground Flowers**: \n - The primary focus is on a large, pink cosmos flower with a prominent yellow center. The petals are soft and slightly r'
单张图像推理
此示例展示了如何使用聊天模板对InternVL模型进行单张图像推理:
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> import torch
>>> torch_device = "cuda"
>>> model_checkpoint = "OpenGVLab/InternVL3-38B-hf"
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
>>> messages = [
... {
... "role": "user",
... "content": [
... {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
... {"type": "text", "text": "Please describe the image explicitly."},
... ],
... }
... ]
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
>>> generate_ids = model.generate(**inputs, max_new_tokens=50)
>>> decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
>>> decoded_output
'The image shows two cats lying on a pink blanket. The cat on the left is a tabby with a mix of brown, black, and white fur, and it appears to be sleeping with its head resting on the blanket. The cat on the'
纯文本生成
此示例展示了如何在不提供任何图像输入的情况下使用InternVL模型生成文本:
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> import torch
>>> torch_device = "cuda"
>>> model_checkpoint = "OpenGVLab/InternVL3-38B-hf"
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
>>> messages = [
... {
... "role": "user",
... "content": [
... {"type": "text", "text": "Write a haiku"},
... ],
... }
... ]
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device, dtype=torch.bfloat16)
>>> generate_ids = model.generate(**inputs, max_new_tokens=50)
>>> decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
>>> print(decoded_output)
"Whispers of dawn,\nSilent whispers of the night,\nNew day's light begins."
高级用法
批量图像和文本输入
InternVL模型还支持批量图像和文本输入:
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> import torch
>>> torch_device = "cuda"
>>> model_checkpoint = "OpenGVLab/InternVL3-38B-hf"
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
>>> messages = [
... [
... {
... "role": "user",
... "content": [
... {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
... {"type": "text", "text": "Write a haiku for this image"},
... ],
... },
... ],
... [
... {
... "role": "user",
... "content": [
... {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
... {"type": "text", "text": "Describe this image"},
... ],
... },
... ],
... ]
>>> inputs = processor.apply_chat_template(messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
>>> output = model.generate(**inputs, max_new_tokens=25)
>>> decoded_outputs = processor.batch_decode(output, skip_special_tokens=True)
>>> decoded_outputs
["user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace.",
'user\n\nDescribe this image\nassistant\nThe image shows a street scene with a traditional Chinese archway, known as a "Chinese Gate" or "Chinese Gate of']
批量多图像输入
InternVL模型的此实现支持每个文本对应不同数量图像的批量文本 - 图像输入:
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> import torch
>>> torch_device = "cuda"
>>> model_checkpoint = "OpenGVLab/InternVL3-38B-hf"
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
>>> messages = [
... [
... {
... "role": "user",
... "content": [
... {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
... {"type": "text", "text": "Write a haiku for this image"},
... ],
... },
... ],
... [
... {
... "role": "user",
... "content": [
... {"type": "image", "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"},
... {"type": "image", "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"},
... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
... ],
... },
... ],
>>> ]
>>> inputs = processor.apply_chat_template(messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
>>> output = model.generate(**inputs, max_new_tokens=25)
>>> decoded_outputs = processor.batch_decode(output, skip_special_tokens=True)
>>> decoded_outputs
["user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace.",
'user\n\n\nThese images depict two different landmarks. Can you identify them?\nassistant\nYes, these images depict the Statue of Liberty and the Golden Gate Bridge.']
视频输入
InternVL模型还可以处理视频输入。以下是如何使用聊天模板对视频输入进行推理的示例:
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
>>> model_checkpoint = "OpenGVLab/InternVL3-38B-hf"
>>> quantization_config = BitsAndBytesConfig(load_in_4bit=True)
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, quantization_config=quantization_config)
>>> messages = [
... {
... "role": "user",
... "content": [
... {
... "type": "video",
... "url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4",
... },
... {"type": "text", "text": "What type of shot is the man performing?"},
... ],
... }
>>> ]
>>> inputs = processor.apply_chat_template(
... messages,
... return_tensors="pt",
... add_generation_prompt=True,
... tokenize=True,
... return_dict=True,
>>> ).to(model.device, dtype=torch.float16)
>>> output = model.generate(**inputs, max_new_tokens=25)
>>> decoded_output = processor.decode(output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
>>> decoded_output
'The man is performing a forehand shot.'
交错的图像和视频输入
此示例展示了如何使用聊天模板处理包含交错图像和视频输入的批量聊天对话:
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
>>> import torch
>>> torch_device = "cuda"
>>> model_checkpoint = "OpenGVLab/InternVL3-38B-hf"
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
>>> messages = [
... [
... {
... "role": "user",
... "content": [
... {"type": "image", "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"},
... {"type": "image", "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"},
... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
... ],
... },
... ],
... [
... {
... "role": "user",
... "content": [
... {"type": "video", "url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4"},
... {"type": "text", "text": "What type of shot is the man performing?"},
... ],
... },
... ],
... [
... {
... "role": "user",
... "content": [
... {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
... {"type": "text", "text": "Write a haiku for this image"},
... ],
... },
... ],
>>> ]
>>> inputs = processor.apply_chat_template(
... messages,
... padding=True,
... add_generation_prompt=True,
... tokenize=True,
... return_dict=True,
... return_tensors="pt",
>>> ).to(model.device, dtype=torch.bfloat16)
>>> outputs = model.generate(**inputs, max_new_tokens=25)
>>> decoded_outputs = processor.batch_decode(outputs, skip_special_tokens=True)
>>> decoded_outputs
['user\n\n\nThese images depict two different landmarks. Can you identify them?\nassistant\nThe images depict the Statue of Liberty and the Golden Gate Bridge.',
'user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nA forehand shot',
"user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace."]
📄 许可证
本项目基于MIT许可证发布。本项目使用了预训练的Qwen2.5作为组件,该组件遵循Qwen许可证。
📚 详细文档
你可以在原始检查点 OpenGVLab/InternVL3-38B 中找到有关InternVL3系列的更多信息。
📚 引用
如果你在研究中发现本项目有用,请考虑引用以下文献:
@article{chen2024expanding,
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
journal={arXiv preprint arXiv:2412.05271},
year={2024}
}
@article{wang2024mpo,
title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2411.10442},
year={2024}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@inproceedings{chen2024internvl,
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={24185--24198},
year={2024}
}
Clip Vit Large Patch14
CLIP是由OpenAI开发的视觉-语言模型,通过对比学习将图像和文本映射到共享的嵌入空间,支持零样本图像分类
图像生成文本
C
openai
44.7M
1,710
Clip Vit Base Patch32
CLIP是由OpenAI开发的多模态模型,能够理解图像和文本之间的关系,支持零样本图像分类任务。
图像生成文本
C
openai
14.0M
666
Siglip So400m Patch14 384
Apache-2.0
SigLIP是基于WebLi数据集预训练的视觉语言模型,采用改进的sigmoid损失函数,优化了图像-文本匹配任务。
图像生成文本
Transformers

S
google
6.1M
526
Clip Vit Base Patch16
CLIP是由OpenAI开发的多模态模型,通过对比学习将图像和文本映射到共享的嵌入空间,实现零样本图像分类能力。
图像生成文本
C
openai
4.6M
119
Blip Image Captioning Base
Bsd-3-clause
BLIP是一个先进的视觉-语言预训练模型,擅长图像描述生成任务,支持条件式和非条件式文本生成。
图像生成文本
Transformers

B
Salesforce
2.8M
688
Blip Image Captioning Large
Bsd-3-clause
BLIP是一个统一的视觉-语言预训练框架,擅长图像描述生成任务,支持条件式和无条件式图像描述生成。
图像生成文本
Transformers

B
Salesforce
2.5M
1,312
Openvla 7b
MIT
OpenVLA 7B是一个基于Open X-Embodiment数据集训练的开源视觉-语言-动作模型,能够根据语言指令和摄像头图像生成机器人动作。
图像生成文本
Transformers 英语

O
openvla
1.7M
108
Llava V1.5 7b
LLaVA 是一款开源多模态聊天机器人,基于 LLaMA/Vicuna 微调,支持图文交互。
图像生成文本
Transformers

L
liuhaotian
1.4M
448
Vit Gpt2 Image Captioning
Apache-2.0
这是一个基于ViT和GPT2架构的图像描述生成模型,能够为输入图像生成自然语言描述。
图像生成文本
Transformers

V
nlpconnect
939.88k
887
Blip2 Opt 2.7b
MIT
BLIP-2是一个视觉语言模型,结合了图像编码器和大型语言模型,用于图像到文本的生成任务。
图像生成文本
Transformers 英语

B
Salesforce
867.78k
359
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98
智启未来,您的人工智能解决方案智库
简体中文