M
Mmlw E5 Small
由 sdadas 开发
mmlw-e5-small 是一个用于句子相似度任务的句子转换器模型,支持波兰语文本处理。
下载量 76
发布时间 : 11/17/2023
模型介绍
内容详情
替代品
模型简介
该模型主要用于句子相似度计算和特征提取任务,能够将输入的句子转换为向量表示,以便进行相似度比较或其他下游任务。
模型特点
波兰语优化
专门针对波兰语文本进行了优化,在波兰语任务上表现良好。
多功能应用
支持多种自然语言处理任务,包括聚类、分类、检索和句子相似度计算。
高效特征提取
能够高效地将句子转换为向量表示,便于后续处理和分析。
模型能力
句子相似度计算
文本特征提取
文本聚类
文本分类
信息检索
使用案例
文本分析
文档聚类
将相似文档分组
在PL-MTEB/8tags-clustering数据集上v_measure得分为31.77
情感分析
分析文本情感倾向
在MTEB PolEmo2.0-IN数据集上准确率达63.96%
信息检索
问答系统
检索与问题相关的答案
在MTEB NQ-PL数据集上map@10为28.04
文档检索
查找相关文档
在MTEB MSMARCO-PL数据集上map@10为21.18
pipeline_tag: 句子相似度 tags:
- 句子转换器
- 特征提取
- 句子相似度
- 转换器
- MTEB model-index:
- name: mmlw-e5-small
results:
- task:
type: 聚类
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: 默认
split: 测试
revision: 无
metrics:
- type: v_measure value: 31.772224277808153
- task:
type: 分类
dataset:
type: PL-MTEB/allegro-reviews
name: MTEB AllegroReviews
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 33.03180914512922
- type: f1 value: 29.800304217426167
- task:
type: 检索
dataset:
type: arguana-pl
name: MTEB ArguAna-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 28.804999999999996
- type: map_at_10 value: 45.327
- type: map_at_100 value: 46.17
- type: map_at_1000 value: 46.177
- type: map_at_3 value: 40.528999999999996
- type: map_at_5 value: 43.335
- type: mrr_at_1 value: 30.299
- type: mrr_at_10 value: 45.763
- type: mrr_at_100 value: 46.641
- type: mrr_at_1000 value: 46.648
- type: mrr_at_3 value: 41.074
- type: mrr_at_5 value: 43.836999999999996
- type: ndcg_at_1 value: 28.804999999999996
- type: ndcg_at_10 value: 54.308
- type: ndcg_at_100 value: 57.879000000000005
- type: ndcg_at_1000 value: 58.048
- type: ndcg_at_3 value: 44.502
- type: ndcg_at_5 value: 49.519000000000005
- type: precision_at_1 value: 28.804999999999996
- type: precision_at_10 value: 8.286
- type: precision_at_100 value: 0.984
- type: precision_at_1000 value: 0.1
- type: precision_at_3 value: 18.682000000000002
- type: precision_at_5 value: 13.627
- type: recall_at_1 value: 28.804999999999996
- type: recall_at_10 value: 82.85900000000001
- type: recall_at_100 value: 98.36399999999999
- type: recall_at_1000 value: 99.644
- type: recall_at_3 value: 56.04599999999999
- type: recall_at_5 value: 68.137
- task:
type: 分类
dataset:
type: PL-MTEB/cbd
name: MTEB CBD
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 64.24
- type: ap value: 17.967103105024705
- type: f1 value: 52.97375416129459
- task:
type: 配对分类
dataset:
type: PL-MTEB/cdsce-pairclassification
name: MTEB CDSC-E
config: 默认
split: 测试
revision: 无
metrics:
- type: 余弦相似度准确率 value: 88.8
- type: 余弦相似度平均精度 value: 76.68028778789487
- type: 余弦相似度f1 value: 66.82352941176471
- type: 余弦相似度精确率 value: 60.42553191489362
- type: 余弦相似度召回率 value: 74.73684210526315
- type: 点积准确率 value: 88.1
- type: 点积平均精度 value: 72.04910086070551
- type: 点积f1 value: 66.66666666666667
- type: 点积精确率 value: 69.31818181818183
- type: 点积召回率 value: 64.21052631578948
- type: 欧几里得准确率 value: 88.8
- type: 欧几里得平均精度 value: 76.63591858340688
- type: 欧几里得f1 value: 67.13286713286713
- type: 欧几里得精确率 value: 60.25104602510461
- type: 欧几里得召回率 value: 75.78947368421053
- type: 曼哈顿准确率 value: 88.9
- type: 曼哈顿平均精度 value: 76.54552849815124
- type: 曼哈顿f1 value: 66.66666666666667
- type: 曼哈顿精确率 value: 60.51502145922747
- type: 曼哈顿召回率 value: 74.21052631578947
- type: 最大准确率 value: 88.9
- type: 最大平均精度 value: 76.68028778789487
- type: 最大f1 value: 67.13286713286713
- task:
type: STS
dataset:
type: PL-MTEB/cdscr-sts
name: MTEB CDSC-R
config: 默认
split: 测试
revision: 无
metrics:
- type: 余弦相似度皮尔逊 value: 91.64169404461497
- type: 余弦相似度斯皮尔曼 value: 91.9755161377078
- type: 欧几里得皮尔逊 value: 90.87481478491249
- type: 欧几里得斯皮尔曼 value: 91.92362666383987
- type: 曼哈顿皮尔逊 value: 90.8415510499638
- type: 曼哈顿斯皮尔曼 value: 91.85927127194698
- task:
type: 检索
dataset:
type: dbpedia-pl
name: MTEB DBPedia-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 6.148
- type: map_at_10 value: 12.870999999999999
- type: map_at_100 value: 18.04
- type: map_at_1000 value: 19.286
- type: map_at_3 value: 9.156
- type: map_at_5 value: 10.857999999999999
- type: mrr_at_1 value: 53.25
- type: mrr_at_10 value: 61.016999999999996
- type: mrr_at_100 value: 61.48400000000001
- type: mrr_at_1000 value: 61.507999999999996
- type: mrr_at_3 value: 58.75
- type: mrr_at_5 value: 60.375
- type: ndcg_at_1 value: 41.0
- type: ndcg_at_10 value: 30.281000000000002
- type: ndcg_at_100 value: 33.955999999999996
- type: ndcg_at_1000 value: 40.77
- type: ndcg_at_3 value: 34.127
- type: ndcg_at_5 value: 32.274
- type: precision_at_1 value: 52.5
- type: precision_at_10 value: 24.525
- type: precision_at_100 value: 8.125
- type: precision_at_1000 value: 1.728
- type: precision_at_3 value: 37.083
- type: precision_at_5 value: 32.15
- type: recall_at_1 value: 6.148
- type: recall_at_10 value: 17.866
- type: recall_at_100 value: 39.213
- type: recall_at_1000 value: 61.604000000000006
- type: recall_at_3 value: 10.084
- type: recall_at_5 value: 13.333999999999998
- task:
type: 检索
dataset:
type: fiqa-pl
name: MTEB FiQA-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 14.643
- type: map_at_10 value: 23.166
- type: map_at_100 value: 24.725
- type: map_at_1000 value: 24.92
- type: map_at_3 value: 20.166
- type: map_at_5 value: 22.003
- type: mrr_at_1 value: 29.630000000000003
- type: mrr_at_10 value: 37.632
- type: mrr_at_100 value: 38.512
- type: mrr_at_1000 value: 38.578
- type: mrr_at_3 value: 35.391
- type: mrr_at_5 value: 36.857
- type: ndcg_at_1 value: 29.166999999999998
- type: ndcg_at_10 value: 29.749
- type: ndcg_at_100 value: 35.983
- type: ndcg_at_1000 value: 39.817
- type: ndcg_at_3 value: 26.739
- type: ndcg_at_5 value: 27.993000000000002
- type: precision_at_1 value: 29.166999999999998
- type: precision_at_10 value: 8.333
- type: precision_at_100 value: 1.448
- type: precision_at_1000 value: 0.213
- type: precision_at_3 value: 17.747
- type: precision_at_5 value: 13.58
- type: recall_at_1 value: 14.643
- type: recall_at_10 value: 35.247
- type: recall_at_100 value: 59.150999999999996
- type: recall_at_1000 value: 82.565
- type: recall_at_3 value: 24.006
- type: recall_at_5 value: 29.383
- task:
type: 检索
dataset:
type: hotpotqa-pl
name: MTEB HotpotQA-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 32.627
- type: map_at_10 value: 48.041
- type: map_at_100 value: 49.008
- type: map_at_1000 value: 49.092999999999996
- type: map_at_3 value: 44.774
- type: map_at_5 value: 46.791
- type: mrr_at_1 value: 65.28
- type: mrr_at_10 value: 72.53500000000001
- type: mrr_at_100 value: 72.892
- type: mrr_at_1000 value: 72.909
- type: mrr_at_3 value: 71.083
- type: mrr_at_5 value: 71.985
- type: ndcg_at_1 value: 65.253
- type: ndcg_at_10 value: 57.13700000000001
- type: ndcg_at_100 value: 60.783
- type: ndcg_at_1000 value: 62.507000000000005
- type: ndcg_at_3 value: 52.17
- type: ndcg_at_5 value: 54.896
- type: precision_at_1 value: 65.253
- type: precision_at_10 value: 12.088000000000001
- type: precision_at_100 value: 1.496
- type: precision_at_1000 value: 0.172
- type: precision_at_3 value: 32.96
- type: precision_at_5 value: 21.931
- type: recall_at_1 value: 32.627
- type: recall_at_10 value: 60.439
- type: recall_at_100 value: 74.80799999999999
- type: recall_at_1000 value: 86.219
- type: recall_at_3 value: 49.44
- type: recall_at_5 value: 54.827999999999996
- task:
type: 检索
dataset:
type: msmarco-pl
name: MTEB MSMARCO-PL
config: 默认
split: 验证
revision: 无
metrics:
- type: map_at_1 value: 13.150999999999998
- type: map_at_10 value: 21.179000000000002
- type: map_at_100 value: 22.227
- type: map_at_1000 value: 22.308
- type: map_at_3 value: 18.473
- type: map_at_5 value: 19.942999999999998
- type: mrr_at_1 value: 13.467
- type: mrr_at_10 value: 21.471
- type: mrr_at_100 value: 22.509
- type: mrr_at_1000 value: 22.585
- type: mrr_at_3 value: 18.789
- type: mrr_at_5 value: 20.262
- type: ndcg_at_1 value: 13.539000000000001
- type: ndcg_at_10 value: 25.942999999999998
- type: ndcg_at_100 value: 31.386999999999997
- type: ndcg_at_1000 value: 33.641
- type: ndcg_at_3 value: 20.368
- type: ndcg_at_5 value: 23.003999999999998
- type: precision_at_1 value: 13.539000000000001
- type: precision_at_10 value: 4.249
- type: precision_at_100 value: 0.7040000000000001
- type: precision_at_1000 value: 0.09
- type: precision_at_3 value: 8.782
- type: precision_at_5 value: 6.6049999999999995
- type: recall_at_1 value: 13.150999999999998
- type: recall_at_10 value: 40.698
- type: recall_at_100 value: 66.71000000000001
- type: recall_at_1000 value: 84.491
- type: recall_at_3 value: 25.452
- type: recall_at_5 value: 31.791000000000004
- task:
type: 分类
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: 测试
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: 准确率 value: 67.3537323470074
- type: f1 value: 64.67852047603644
- task:
type: 分类
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: 测试
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: 准确率 value: 72.12508406186953
- type: f1 value: 71.55887309568853
- task:
type: 检索
dataset:
type: nfcorpus-pl
name: MTEB NFCorpus-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 4.18
- type: map_at_10 value: 9.524000000000001
- type: map_at_100 value: 12.272
- type: map_at_1000 value: 13.616
- type: map_at_3 value: 6.717
- type: map_at_5 value: 8.172
- type: mrr_at_1 value: 37.152
- type: mrr_at_10 value: 45.068000000000005
- type: mrr_at_100 value: 46.026
- type: mrr_at_1000 value: 46.085
- type: mrr_at_3 value: 43.344
- type: mrr_at_5 value: 44.412
- type: ndcg_at_1 value: 34.52
- type: ndcg_at_10 value: 27.604
- type: ndcg_at_100 value: 26.012999999999998
- type: ndcg_at_1000 value: 35.272
- type: ndcg_at_3 value: 31.538
- type: ndcg_at_5 value: 30.165999999999997
- type: precision_at_1 value: 36.223
- type: precision_at_10 value: 21.053
- type: precision_at_100 value: 7.08
- type: precision_at_1000 value: 1.9929999999999999
- type: precision_at_3 value: 30.031000000000002
- type: precision_at_5 value: 26.997
- type: recall_at_1 value: 4.18
- type: recall_at_10 value: 12.901000000000002
- type: recall_at_100 value: 27.438000000000002
- type: recall_at_1000 value: 60.768
- type: recall_at_3 value: 7.492
- type: recall_at_5 value: 10.05
- task:
type: 检索
dataset:
type: nq-pl
name: MTEB NQ-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 17.965
- type: map_at_10 value: 28.04
- type: map_at_100 value: 29.217
- type: map_at_1000 value: 29.285
- type: map_at_3 value: 24.818
- type: map_at_5 value: 26.617
- type: mrr_at_1 value: 20.22
- type: mrr_at_10 value: 30.148000000000003
- type: mrr_at_100 value: 31.137999999999998
- type: mrr_at_1000 value: 31.19
- type: mrr_at_3 value: 27.201999999999998
- type: mrr_at_5 value: 28.884999999999998
- type: ndcg_at_1 value: 20.365
- type: ndcg_at_10 value: 33.832
- type: ndcg_at_100 value: 39.33
- type: ndcg_at_1000 value: 41.099999999999994
- type: ndcg_at_3 value: 27.46
- type: ndcg_at_5 value: 30.584
- type: precision_at_1 value: 20.365
- type: precision_at_10 value: 5.849
- type: precision_at_100 value: 0.8959999999999999
- type: precision_at_1000 value: 0.107
- type: precision_at_3 value: 12.64
- type: precision_at_5 value: 9.334000000000001
- type: recall_at_1 value: 17.965
- type: recall_at_10 value: 49.503
- type: recall_at_100 value: 74.351
- type: recall_at_1000 value: 87.766
- type: recall_at_3 value: 32.665
- type: recall_at_5 value: 39.974
- task:
type: 分类
dataset:
type: laugustyniak/abusive-clauses-pl
name: MTEB PAC
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 63.11323486823051
- type: ap value: 74.53486257377787
- type: f1 value: 60.631005373417736
- task:
type: 配对分类
dataset:
type: PL-MTEB/ppc-pairclassification
name: MTEB PPC
config: 默认
split: 测试
revision: 无
metrics:
- type: 余弦相似度准确率 value: 80.10000000000001
- type: 余弦相似度平均精度 value: 89.69526236458292
- type: 余弦相似度f1 value: 83.37468982630274
- type: 余弦相似度精确率 value: 83.30578512396694
- type: 余弦相似度召回率 value: 83.44370860927152
- type: 点积准确率 value: 77.8
- type: 点积平均精度 value: 87.72366051496104
- type: 点积f1 value: 82.83752860411899
- type: 点积精确率 value: 76.80339462517681
- type: 点积召回率 value: 89.90066225165563
- type: 欧几里得准确率 value: 80.10000000000001
- type: 欧几里得平均精度 value: 89.61317191870039
- type: 欧几里得f1 value: 83.40214698596202
- type: 欧几里得精确率 value: 83.19604612850083
- type: 欧几里得召回率 value: 83.6092715231788
- type: 曼哈顿准确率 value: 79.60000000000001
- type: 曼哈顿平均精度 value: 89.48363786968471
- type: 曼哈顿f1 value: 82.96296296296296
- type: 曼哈顿精确率 value: 82.48772504091653
- type: 曼哈顿召回率 value: 83.44370860927152
- type: 最大准确率 value: 80.10000000000001
- type: 最大平均精度 value: 89.69526236458292
- type: 最大f1 value: 83.40214698596202
- task:
type: 配对分类
dataset:
type: PL-MTEB/psc-pairclassification
name: MTEB PSC
config: 默认
split: 测试
revision: 无
metrics:
- type: 余弦相似度准确率 value: 96.93877551020408
- type: 余弦相似度平均精度 value: 98.86489482248999
- type: 余弦相似度f1 value: 95.11111111111113
- type: 余弦相似度精确率 value: 92.507204610951
- type: 余弦相似度召回率 value: 97.86585365853658
- type: 点积准确率 value: 95.73283858998145
- type: 点积平均精度 value: 97.8261652492545
- type: 点积f1 value: 93.21533923303835
- type: 点积精确率 value: 90.28571428571428
- type: 点积召回率 value: 96.34146341463415
- type: 欧几里得准确率 value: 96.93877551020408
- type: 欧几里得平均精度 value: 98.84837797066623
- type: 欧几里得f1 value: 95.11111111111113
- type: 欧几里得精确率 value: 92.507204610951
- type: 欧几里得召回率 value: 97.86585365853658
- type: 曼哈顿准确率 value: 96.84601113172542
- type: 曼哈顿平均精度 value: 98.78659090944161
- type: 曼哈顿f1 value: 94.9404761904762
- type: 曼哈顿精确率 value: 92.73255813953489
- type: 曼哈顿召回率 value: 97.2560975609756
- type: 最大准确率 value: 96.93877551020408
- type: 最大平均精度 value: 98.86489482248999
- type: 最大f1 value: 95.11111111111113
- task:
type: 分类
dataset:
type: PL-MTEB/polemo2_in
name: MTEB PolEmo2.0-IN
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 63.961218836565095
- type: f1 value: 64.3979989243291
- task:
type: 分类
dataset:
type: PL-MTEB/polemo2_out
name: MTEB PolEmo2.0-OUT
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 40.32388663967612
- type: f1 value: 32.339117999015755
- task:
type: 检索
dataset:
type: quora-pl
name: MTEB Quora-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 62.757
- type: map_at_10 value: 76.55999999999999
- type: map_at_100 value: 77.328
- type: map_at_1000 value: 77.35499999999999
- type: map_at_3 value: 73.288
- type: map_at_5 value: 75.25500000000001
- type: mrr_at_1 value: 72.28
- type: mrr_at_10 value: 79.879
- type: mrr_at_100 value: 80.121
- type: mrr_at_1000 value: 80.12700000000001
- type: mrr_at_3 value: 78.40700000000001
- type: mrr_at_5 value: 79.357
- type: ndcg_at_1 value: 72.33000000000001
- type: ndcg_at_10 value: 81.151
- type: ndcg_at_100 value: 83.107
- type: ndcg_at_1000 value: 83.397
- type: ndcg_at_3 value: 77.3
- type: ndcg_at_5 value: 79.307
- type: precision_at_1 value: 72.33000000000001
- type: precision_at_10 value: 12.587000000000002
- type: precision_at_100 value: 1.488
- type: precision_at_1000 value: 0.155
- type: precision_at_3 value: 33.943
- type: precision_at_5 value: 22.61
- type: recall_at_1 value: 62.757
- type: recall_at_10 value: 90.616
- type: recall_at_100 value: 97.905
- type: recall_at_1000 value: 99.618
- type: recall_at_3 value: 79.928
- type: recall_at_5 value: 85.30499999999999
- task:
type: 检索
dataset:
type: scidocs-pl
name: MTEB SCIDOCS-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 3.313
- type: map_at_10 value: 8.559999999999999
- type: map_at_100 value: 10.177999999999999
- type: map_at_1000 value: 10.459999999999999
- type: map_at_3 value: 6.094
- type: map_at_5 value: 7.323
- type: mrr_at_1 value: 16.3
- type: mrr_at_10 value: 25.579
- type: mrr_at_100 value: 26.717000000000002
- type: mrr_at_1000 value: 26.799
- type: mrr_at_3 value: 22.583000000000002
- type: mrr_at_5 value: 24.298000000000002
- type: ndcg_at_1 value: 16.3
- type: ndcg_at_10 value: 14.789
- type: ndcg_at_100 value: 21.731
- type: ndcg_at_1000 value: 27.261999999999997
- type: ndcg_at_3 value: 13.74
- type: ndcg_at_5 value: 12.199
- type: precision_at_1 value: 16.3
- type: precision_at_10 value: 7.779999999999999
- type: precision_at_100 value: 1.79
- type: precision_at_1000 value: 0
- task:
type: 聚类
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: 默认
split: 测试
revision: 无
metrics:
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers

支持多种语言
J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入
英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers

英语
O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入
英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入
英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers

支持多种语言
G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers

支持多种语言
G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers

其他
B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors
英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers

支持多种语言
L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers

英语
C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统
中文
R
uer
2,694
98
AIbase是一个专注于MCP服务的平台,为AI开发者提供高质量的模型上下文协议服务,助力AI应用开发。
简体中文