M
Mmlw E5 Large
由 sdadas 开发
mmlw-e5-large 是一个基于句子转换器的特征提取模型,专注于句子相似度任务,支持波兰语。
下载量 50
发布时间 : 11/17/2023
模型介绍
内容详情
替代品
模型简介
该模型主要用于句子相似度计算和特征提取,适用于多种自然语言处理任务,如聚类、分类和检索。
模型特点
多任务支持
支持多种任务,包括聚类、分类、检索和句子相似度计算。
高性能
在多个波兰语数据集上表现出色,特别是在句子相似度和检索任务中。
波兰语优化
专门针对波兰语进行了优化,适用于波兰语的自然语言处理任务。
模型能力
句子相似度计算
特征提取
文本聚类
文本分类
信息检索
使用案例
文本分类
情感分析
用于对波兰语文本进行情感分类。
在 MTEB AllegroReviews 数据集上准确率为 37.68%。
意图识别
用于识别用户输入的意图。
在 MTEB MassiveIntentClassification 数据集上准确率为 72.01%。
信息检索
文档检索
用于从大量文档中检索相关信息。
在 MTEB DBPedia-PL 数据集上 map@100 为 26.43%。
问答系统
用于构建问答系统,检索相关答案。
在 MTEB NQ-PL 数据集上 map@100 为 41.04%。
句子相似度
语义相似度计算
用于计算两个句子的语义相似度。
在 MTEB CDSC-R 数据集上 cos_sim_pearson 为 93.74%。
pipeline_tag: 句子相似度 tags:
- 句子转换器
- 特征提取
- 句子相似度
- 变换器
- MTEB model-index:
- name: mmlw-e5-large
results:
- task:
type: 聚类
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: 默认
split: 测试
revision: 无
metrics:
- type: v_measure value: 30.623921415441725
- task:
type: 分类
dataset:
type: PL-MTEB/allegro-reviews
name: MTEB AllegroReviews
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 37.683896620278325
- type: f1 value: 34.19193027014284
- task:
type: 检索
dataset:
type: arguana-pl
name: MTEB ArguAna-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 38.407000000000004
- type: map_at_10 value: 55.147
- type: map_at_100 value: 55.757
- type: map_at_1000 value: 55.761
- type: map_at_3 value: 51.268
- type: map_at_5 value: 53.696999999999996
- type: mrr_at_1 value: 40.043
- type: mrr_at_10 value: 55.840999999999994
- type: mrr_at_100 value: 56.459
- type: mrr_at_1000 value: 56.462999999999994
- type: mrr_at_3 value: 52.074
- type: mrr_at_5 value: 54.364999999999995
- type: ndcg_at_1 value: 38.407000000000004
- type: ndcg_at_10 value: 63.248000000000005
- type: ndcg_at_100 value: 65.717
- type: ndcg_at_1000 value: 65.79
- type: ndcg_at_3 value: 55.403999999999996
- type: ndcg_at_5 value: 59.760000000000005
- type: precision_at_1 value: 38.407000000000004
- type: precision_at_10 value: 8.862
- type: precision_at_100 value: 0.991
- type: precision_at_1000 value: 0.1
- type: precision_at_3 value: 22.451
- type: precision_at_5 value: 15.576
- type: recall_at_1 value: 38.407000000000004
- type: recall_at_10 value: 88.62
- type: recall_at_100 value: 99.075
- type: recall_at_1000 value: 99.57300000000001
- type: recall_at_3 value: 67.354
- type: recall_at_5 value: 77.881
- task:
type: 分类
dataset:
type: PL-MTEB/cbd
name: MTEB CBD
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 66.14999999999999
- type: ap value: 21.69513674684204
- type: f1 value: 56.48142830893528
- task:
type: 配对分类
dataset:
type: PL-MTEB/cdsce-pairclassification
name: MTEB CDSC-E
config: 默认
split: 测试
revision: 无
metrics:
- type: cos_sim_accuracy value: 89.4
- type: cos_sim_ap value: 76.83228768203222
- type: cos_sim_f1 value: 65.3658536585366
- type: cos_sim_precision value: 60.909090909090914
- type: cos_sim_recall value: 70.52631578947368
- type: dot_accuracy value: 84.1
- type: dot_ap value: 57.26072201751864
- type: dot_f1 value: 62.75395033860045
- type: dot_precision value: 54.9407114624506
- type: dot_recall value: 73.15789473684211
- type: euclidean_accuracy value: 89.4
- type: euclidean_ap value: 76.59095263388942
- type: euclidean_f1 value: 65.21739130434783
- type: euclidean_precision value: 60.26785714285714
- type: euclidean_recall value: 71.05263157894737
- type: manhattan_accuracy value: 89.4
- type: manhattan_ap value: 76.58825999753456
- type: manhattan_f1 value: 64.72019464720195
- type: manhattan_precision value: 60.18099547511312
- type: manhattan_recall value: 70.0
- type: max_accuracy value: 89.4
- type: max_ap value: 76.83228768203222
- type: max_f1 value: 65.3658536585366
- task:
type: STS
dataset:
type: PL-MTEB/cdscr-sts
name: MTEB CDSC-R
config: 默认
split: 测试
revision: 无
metrics:
- type: cos_sim_pearson value: 93.73949495291659
- type: cos_sim_spearman value: 93.50397366192922
- type: euclidean_pearson value: 92.47498888987636
- type: euclidean_spearman value: 93.39315936230747
- type: manhattan_pearson value: 92.47250250777654
- type: manhattan_spearman value: 93.36739690549109
- task:
type: 检索
dataset:
type: dbpedia-pl
name: MTEB DBPedia-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 8.434
- type: map_at_10 value: 18.424
- type: map_at_100 value: 26.428
- type: map_at_1000 value: 28.002
- type: map_at_3 value: 13.502
- type: map_at_5 value: 15.577
- type: mrr_at_1 value: 63.0
- type: mrr_at_10 value: 72.714
- type: mrr_at_100 value: 73.021
- type: mrr_at_1000 value: 73.028
- type: mrr_at_3 value: 70.75
- type: mrr_at_5 value: 72.3
- type: ndcg_at_1 value: 52.75
- type: ndcg_at_10 value: 39.839999999999996
- type: ndcg_at_100 value: 44.989000000000004
- type: ndcg_at_1000 value: 52.532999999999994
- type: ndcg_at_3 value: 45.198
- type: ndcg_at_5 value: 42.015
- type: precision_at_1 value: 63.0
- type: precision_at_10 value: 31.05
- type: precision_at_100 value: 10.26
- type: precision_at_1000 value: 1.9879999999999998
- type: precision_at_3 value: 48.25
- type: precision_at_5 value: 40.45
- type: recall_at_1 value: 8.434
- type: recall_at_10 value: 24.004
- type: recall_at_100 value: 51.428
- type: recall_at_1000 value: 75.712
- type: recall_at_3 value: 15.015
- type: recall_at_5 value: 18.282999999999998
- task:
type: 检索
dataset:
type: fiqa-pl
name: MTEB FiQA-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 19.088
- type: map_at_10 value: 31.818
- type: map_at_100 value: 33.689
- type: map_at_1000 value: 33.86
- type: map_at_3 value: 27.399
- type: map_at_5 value: 29.945
- type: mrr_at_1 value: 38.117000000000004
- type: mrr_at_10 value: 47.668
- type: mrr_at_100 value: 48.428
- type: mrr_at_1000 value: 48.475
- type: mrr_at_3 value: 45.242
- type: mrr_at_5 value: 46.716
- type: ndcg_at_1 value: 38.272
- type: ndcg_at_10 value: 39.903
- type: ndcg_at_100 value: 46.661
- type: ndcg_at_1000 value: 49.625
- type: ndcg_at_3 value: 35.921
- type: ndcg_at_5 value: 37.558
- type: precision_at_1 value: 38.272
- type: precision_at_10 value: 11.358
- type: precision_at_100 value: 1.8190000000000002
- type: precision_at_1000 value: 0.23500000000000001
- type: precision_at_3 value: 24.434
- type: precision_at_5 value: 18.395
- type: recall_at_1 value: 19.088
- type: recall_at_10 value: 47.355999999999995
- type: recall_at_100 value: 72.451
- type: recall_at_1000 value: 90.257
- type: recall_at_3 value: 32.931
- type: recall_at_5 value: 39.878
- task:
type: 检索
dataset:
type: hotpotqa-pl
name: MTEB HotpotQA-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 39.095
- type: map_at_10 value: 62.529
- type: map_at_100 value: 63.425
- type: map_at_1000 value: 63.483000000000004
- type: map_at_3 value: 58.887
- type: map_at_5 value: 61.18599999999999
- type: mrr_at_1 value: 78.123
- type: mrr_at_10 value: 84.231
- type: mrr_at_100 value: 84.408
- type: mrr_at_1000 value: 84.414
- type: mrr_at_3 value: 83.286
- type: mrr_at_5 value: 83.94
- type: ndcg_at_1 value: 78.19
- type: ndcg_at_10 value: 70.938
- type: ndcg_at_100 value: 73.992
- type: ndcg_at_1000 value: 75.1
- type: ndcg_at_3 value: 65.863
- type: ndcg_at_5 value: 68.755
- type: precision_at_1 value: 78.19
- type: precision_at_10 value: 14.949000000000002
- type: precision_at_100 value: 1.733
- type: precision_at_1000 value: 0.188
- type: precision_at_3 value: 42.381
- type: precision_at_5 value: 27.711000000000002
- type: recall_at_1 value: 39.095
- type: recall_at_10 value: 74.747
- type: recall_at_100 value: 86.631
- type: recall_at_1000 value: 93.923
- type: recall_at_3 value: 63.571999999999996
- type: recall_at_5 value: 69.27799999999999
- task:
type: 检索
dataset:
type: msmarco-pl
name: MTEB MSMARCO-PL
config: 默认
split: 验证
revision: 无
metrics:
- type: map_at_1 value: 19.439999999999998
- type: map_at_10 value: 30.264000000000003
- type: map_at_100 value: 31.438
- type: map_at_1000 value: 31.495
- type: map_at_3 value: 26.735
- type: map_at_5 value: 28.716
- type: mrr_at_1 value: 19.914
- type: mrr_at_10 value: 30.753999999999998
- type: mrr_at_100 value: 31.877
- type: mrr_at_1000 value: 31.929000000000002
- type: mrr_at_3 value: 27.299
- type: mrr_at_5 value: 29.254
- type: ndcg_at_1 value: 20.014000000000003
- type: ndcg_at_10 value: 36.472
- type: ndcg_at_100 value: 42.231
- type: ndcg_at_1000 value: 43.744
- type: ndcg_at_3 value: 29.268
- type: ndcg_at_5 value: 32.79
- type: precision_at_1 value: 20.014000000000003
- type: precision_at_10 value: 5.814
- type: precision_at_100 value: 0.8710000000000001
- type: precision_at_1000 value: 0.1
- type: precision_at_3 value: 12.426
- type: precision_at_5 value: 9.238
- type: recall_at_1 value: 19.439999999999998
- type: recall_at_10 value: 55.535000000000004
- type: recall_at_100 value: 82.44399999999999
- type: recall_at_1000 value: 94.217
- type: recall_at_3 value: 35.963
- type: recall_at_5 value: 44.367000000000004
- task:
type: 分类
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: 测试
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: 准确率 value: 72.01412239408205
- type: f1 value: 70.04544187503352
- task:
type: 分类
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: 测试
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: 准确率 value: 75.26899798251513
- type: f1 value: 75.55876166863844
- task:
type: 检索
dataset:
type: nfcorpus-pl
name: MTEB NFCorpus-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 5.772
- type: map_at_10 value: 12.708
- type: map_at_100 value: 16.194
- type: map_at_1000 value: 17.630000000000003
- type: map_at_3 value: 9.34
- type: map_at_5 value: 10.741
- type: mrr_at_1 value: 43.344
- type: mrr_at_10 value: 53.429
- type: mrr_at_100 value: 53.88699999999999
- type: mrr_at_1000 value: 53.925
- type: mrr_at_3 value: 51.342
- type: mrr_at_5 value: 52.456
- type: ndcg_at_1 value: 41.641
- type: ndcg_at_10 value: 34.028000000000006
- type: ndcg_at_100 value: 31.613000000000003
- type: ndcg_at_1000 value: 40.428
- type: ndcg_at_3 value: 38.991
- type: ndcg_at_5 value: 36.704
- type: precision_at_1 value: 43.034
- type: precision_at_10 value: 25.324999999999996
- type: precision_at_100 value: 7.889
- type: precision_at_1000 value: 2.069
- type: precision_at_3 value: 36.739
- type: precision_at_5 value: 32.074000000000005
- type: recall_at_1 value: 5.772
- type: recall_at_10 value: 16.827
- type: recall_at_100 value: 32.346000000000004
- type: recall_at_1000 value: 62.739
- type: recall_at_3 value: 10.56
- type: recall_at_5 value: 12.655
- task:
type: 检索
dataset:
type: nq-pl
name: MTEB NQ-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 26.101000000000003
- type: map_at_10 value: 39.912
- type: map_at_100 value: 41.037
- type: map_at_1000 value: 41.077000000000005
- type: map_at_3 value: 35.691
- type: map_at_5 value: 38.155
- type: mrr_at_1 value: 29.403000000000002
- type: mrr_at_10 value: 42.376999999999995
- type: mrr_at_100 value: 43.248999999999995
- type: mrr_at_1000 value: 43.277
- type: mrr_at_3 value: 38.794000000000004
- type: mrr_at_5 value: 40.933
- type: ndcg_at_1 value: 29.519000000000002
- type: ndcg_at_10 value: 47.33
- type: ndcg_at_100 value: 52.171
- type: ndcg_at_1000 value: 53.125
- type: ndcg_at_3 value: 39.316
- type: ndcg_at_5 value: 43.457
- type: precision_at_1 value: 29.519000000000002
- type: precision_at_10 value: 8.03
- type: precision_at_100 value: 1.075
- type: precision_at_1000 value: 0.117
- type: precision_at_3 value: 18.009
- type: precision_at_5 value: 13.221
- type: recall_at_1 value: 26.101000000000003
- type: recall_at_10 value: 67.50399999999999
- type: recall_at_100 value: 88.64699999999999
- type: recall_at_1000 value: 95.771
- type: recall_at_3 value: 46.669
- type: recall_at_5 value: 56.24
- task:
type: 分类
dataset:
type: laugustyniak/abusive-clauses-pl
name: MTEB PAC
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 63.76773819866782
- type: ap value: 74.87896817642536
- type: f1 value: 61.420506092721425
- task:
type: 配对分类
dataset:
type: PL-MTEB/ppc-pairclassification
name: MTEB PPC
config: 默认
split: 测试
revision: 无
metrics:
- type: cos_sim_accuracy value: 82.1
- type: cos_sim_ap value: 91.09417013497443
- type: cos_sim_f1 value: 84.78437754271766
- type: cos_sim_precision value: 83.36
- type: cos_sim_recall value: 86.25827814569537
- type: dot_accuracy value: 75.9
- type: dot_ap value: 86.82680649789796
- type: dot_f1 value: 80.5379746835443
- type: dot_precision value: 77.12121212121212
- type: dot_recall value: 84.27152317880795
- type: euclidean_accuracy value: 81.6
- type: euclidean_ap value: 90.81248760600693
- type: euclidean_f1 value: 84.35374149659863
- type: euclidean_precision value: 86.7132867132867
- type: euclidean_recall value: 82.11920529801324
- type: manhattan_accuracy value: 81.6
- type: manhattan_ap value: 90.81272803548767
- type: manhattan_f1 value: 84.33530906011855
- type: manhattan_precision value: 86.30849220103987
- type: manhattan_recall value: 82.45033112582782
- type: max_accuracy value: 82.1
- type: max_ap value: 91.09417013497443
- type: max_f1 value: 84.78437754271766
- task:
type: 配对分类
dataset:
type: PL-MTEB/psc-pairclassification
name: MTEB PSC
config: 默认
split: 测试
revision: 无
metrics:
- type: cos_sim_accuracy value: 98.05194805194806
- type: cos_sim_ap value: 99.52709687103496
- type: cos_sim_f1 value: 96.83257918552036
- type: cos_sim_precision value: 95.82089552238806
- type: cos_sim_recall value: 97.86585365853658
- type: dot_accuracy value: 92.30055658627087
- type: dot_ap value: 94.12759311032353
- type: dot_f1 value: 87.00906344410878
- type: dot_precision value: 86.22754491017965
- type: dot_recall value: 87.8048780487805
- type: euclidean_accuracy value: 98.05194805194806
- type: euclidean_ap value: 99.49402675624125
- type: euclidean_f1 value: 96.8133535660091
- type: euclidean_precision value: 96.37462235649546
- type: euclidean_recall value: 97.2560975609756
- type: manhattan_accuracy value: 98.05194805194806
- type: manhattan_ap value: 99.50120505935962
- type: manhattan_f1 value: 96.8133535660091
- type: manhattan_precision value: 96.37462235649546
- type: manhattan_recall value: 97.2560975609756
- type: max_accuracy value: 98.05194805194806
- type: max_ap value: 99.52709687103496
- type: max_f1 value: 96.83257918552036
- task:
type: 分类
dataset:
type: PL-MTEB/polemo2_in
name: MTEB PolEmo2.0-IN
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 69.45983379501385
- type: f1 value: 68.60917948426784
- task:
type: 分类
dataset:
type: PL-MTEB/polemo2_out
name: MTEB PolEmo2.0-OUT
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 43.13765182186235
- type: f1 value: 36.15557441785656
- task:
type: 检索
dataset:
type: quora-pl
name: MTEB Quora-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 67.448
- type: map_at_10 value: 81.566
- type: map_at_100 value: 82.284
- type: map_at_1000 value: 82.301
- type: map_at_3 value: 78.425
- type: map_at_5 value: 80.43400000000001
- type: mrr_at_1 value: 77.61
- type: mrr_at_10 value: 84.467
- type: mrr_at_100 value: 84.63199999999999
- type: mrr_at_1000 value: 84.634
- type: mrr_at_3 value: 83.288
- type: mrr_at_5 value: 84.095
- type: ndcg_at_1 value: 77.66
- type: ndcg_at_10 value: 85.63199999999999
- type: ndcg_at_100 value: 87.166
- type: ndcg_at_1000 value: 87.306
- type: ndcg_at_3 value: 82.32300000000001
- type: ndcg_at_5 value: 84.22
- type: precision_at_1 value: 77.66
- type: precision_at_10 value: 13.136000000000001
- type: precision_at_100 value: 1.522
- type: precision_at_1000 value: 0.156
- type: precision_at_3 value: 36.153
- type: precision_at_5 value: 23.982
- type: recall_at_1 value: 67.448
- type: recall_at_10 value: 93.83200000000001
- type: recall_at_100 value: 99.212
- type: recall_at_1000 value: 99.94
- type: recall_at_3 value: 84.539
- type: recall_at_5 value: 89.71000000000001
- task:
type: 检索
dataset:
type: scidocs-pl
name: MTEB SCIDOCS-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 4.393
- type: map_at_10 value: 11.472
- type: map_at_100 value: 13.584999999999999
- type: map_at_1000 value: 13.918
- type: map_at_3 value: 8.212
- type: map_at_5 value: 9.864
- type: mrr_at_1 value: 21.7
- type: mrr_at_10 value: 32.268
- type: mrr_at_100 value: 33.495000000000005
- type: mrr_at_1000 value: 33.548
- type: mrr_at_3 value: 29.15
- type: mrr_at_5 value: 30.91
- type: ndcg_at_1 value: 21.6
- type: ndcg_at_10 value: 19.126
- type: ndcg_at_100 value: 27.496
- type: ndcg_at_1000 value: 33.274
- type: ndcg_at_3 value: 18.196
- type: ndcg_at_5 value: 15.945
- type: precision_at_1 value: 21.6
- type: precision_at_10 value: 9.94
- type: precision_at_100 value: 2.1999999999999997
- type: precision_at_1000 value: 0.359
- type: precision_at_3 value: 17.2
- type: precision_at_5 value: 14.12
- type: recall_at_1 value: 4.393
- type: recall_at_10 value: 20.166999999999998
- type: recall_at_100 value: 44.678000000000004
- type: recall_at_1000 value: 72.868
- type: recall_at_3 value: 10.473
- type: recall_at_5 value: 14.313
- task: type: 配对分类 dataset: type: PL-MTEB/sicke-pl-pairclassification name: MTEB SICK-E-PL config: 默认
- task:
type: 聚类
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: 默认
split: 测试
revision: 无
metrics:
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers

支持多种语言
J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入
英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers

英语
O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入
英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入
英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers

支持多种语言
G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers

支持多种语言
G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers

其他
B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors
英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers

支持多种语言
L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers

英语
C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统
中文
R
uer
2,694
98
AIbase是一个专注于MCP服务的平台,为AI开发者提供高质量的模型上下文协议服务,助力AI应用开发。
简体中文