pipeline_tag: 句子相似度
tags:
- 句子转换器
- 特征提取
- 句子相似度
- 转换器
language:
- 韩语
widget:
- source_sentence: "那家餐厅在飞苍蝇"
sentences:
- "那家餐厅没有顾客"
- "那家餐厅在飞无人机"
- "苍蝇在餐厅里飞来飞去"
example_title: "餐厅"
- source_sentence: "困意袭来"
sentences:
- "毫无睡意"
- "昏昏欲睡"
- "火车进站"
example_title: "困倦"
marigold334/KR-SBERT-V40K-klueNLI-augSTS-ft
这是对SNUNLP实验室调优的KR-SBERT模型进行微调后的版本。
使用方法(Sentence-Transformers)
安装sentence-transformers后,可以轻松使用此模型:
pip install -U sentence-transformers
然后可以这样使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["这是一个示例句子", "每个句子都被转换"]
model = SentenceTransformer('snunlp/KR-SBERT-V40K-klueNLI-augSTS-ft')
embeddings = model.encode(sentences)
print(embeddings)
使用方法(HuggingFace Transformers)
如果没有安装sentence-transformers,可以这样使用模型:首先将输入传递给转换器模型,然后需要在上下文化的词嵌入上应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['这是一个示例句子', '每个句子都被转换']
tokenizer = AutoTokenizer.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
model = AutoModel.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS-ft')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入:")
print(sentence_embeddings)
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)