M
Mmlw E5 Base
由 sdadas 开发
mmlw-e5-base 是一个基于句子转换器的特征提取模型,专注于句子相似度任务,支持波兰语。
下载量 37
发布时间 : 11/17/2023
模型介绍
内容详情
替代品
模型简介
该模型主要用于句子相似度计算和特征提取,适用于多种自然语言处理任务,如文本聚类、分类和检索。
模型特点
多任务支持
模型支持多种任务,包括聚类、分类、检索和句子相似度计算。
波兰语优化
针对波兰语进行了优化,在多个波兰语数据集上表现出色。
高性能特征提取
能够高效提取句子级别的特征表示,适用于下游任务。
模型能力
句子相似度计算
文本特征提取
文本聚类
文本分类
信息检索
使用案例
文本分析
产品评论分类
对波兰语产品评论进行情感分类
在MTEB AllegroReviews数据集上达到36.38%的准确率
法律条款分类
识别法律条款中的滥用内容
在MTEB PAC数据集上达到64.50%的准确率
信息检索
问答系统
构建波兰语问答系统
在MTEB NQ-PL数据集上达到24.67%的map@1
文档检索
波兰语文档检索系统
在MTEB DBPedia-PL数据集上达到8.27%的map@1
pipeline_tag: 句子相似度 tags:
- 句子转换器
- 特征提取
- 句子相似度
- 转换器
- MTEB model-index:
- name: mmlw-e5-base
results:
- task:
type: 聚类
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: 默认
split: 测试
revision: 无
metrics:
- type: v_measure value: 30.249113010261492
- task:
type: 分类
dataset:
type: PL-MTEB/allegro-reviews
name: MTEB AllegroReviews
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 36.3817097415507
- type: f1 value: 32.77742158736663
- task:
type: 检索
dataset:
type: arguana-pl
name: MTEB ArguAna-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 32.646
- type: map_at_10 value: 49.488
- type: map_at_100 value: 50.190999999999995
- type: map_at_1000 value: 50.194
- type: map_at_3 value: 44.749
- type: map_at_5 value: 47.571999999999996
- type: mrr_at_1 value: 34.211000000000006
- type: mrr_at_10 value: 50.112
- type: mrr_at_100 value: 50.836000000000006
- type: mrr_at_1000 value: 50.839
- type: mrr_at_3 value: 45.614
- type: mrr_at_5 value: 48.242000000000004
- type: ndcg_at_1 value: 32.646
- type: ndcg_at_10 value: 58.396
- type: ndcg_at_100 value: 61.285000000000004
- type: ndcg_at_1000 value: 61.358999999999995
- type: ndcg_at_3 value: 48.759
- type: ndcg_at_5 value: 53.807
- type: precision_at_1 value: 32.646
- type: precision_at_10 value: 8.663
- type: precision_at_100 value: 0.9900000000000001
- type: precision_at_1000 value: 0.1
- type: precision_at_3 value: 20.128
- type: precision_at_5 value: 14.509
- type: recall_at_1 value: 32.646
- type: recall_at_10 value: 86.629
- type: recall_at_100 value: 99.004
- type: recall_at_1000 value: 99.57300000000001
- type: recall_at_3 value: 60.38400000000001
- type: recall_at_5 value: 72.54599999999999
- task:
type: 分类
dataset:
type: PL-MTEB/cbd
name: MTEB CBD
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 65.53999999999999
- type: ap value: 19.75395945379771
- type: f1 value: 55.00481388401326
- task:
type: 配对分类
dataset:
type: PL-MTEB/cdsce-pairclassification
name: MTEB CDSC-E
config: 默认
split: 测试
revision: 无
metrics:
- type: cos_sim_accuracy value: 89.5
- type: cos_sim_ap value: 77.26879308078568
- type: cos_sim_f1 value: 65.13157894736842
- type: cos_sim_precision value: 86.8421052631579
- type: cos_sim_recall value: 52.10526315789473
- type: dot_accuracy value: 88.0
- type: dot_ap value: 69.17235659054914
- type: dot_f1 value: 65.71428571428571
- type: dot_precision value: 71.875
- type: dot_recall value: 60.526315789473685
- type: euclidean_accuracy value: 89.5
- type: euclidean_ap value: 77.1905400565015
- type: euclidean_f1 value: 64.91803278688525
- type: euclidean_precision value: 86.08695652173914
- type: euclidean_recall value: 52.10526315789473
- type: manhattan_accuracy value: 89.5
- type: manhattan_ap value: 77.19531778873724
- type: manhattan_f1 value: 64.72491909385113
- type: manhattan_precision value: 84.03361344537815
- type: manhattan_recall value: 52.63157894736842
- type: max_accuracy value: 89.5
- type: max_ap value: 77.26879308078568
- type: max_f1 value: 65.71428571428571
- task:
type: STS
dataset:
type: PL-MTEB/cdscr-sts
name: MTEB CDSC-R
config: 默认
split: 测试
revision: 无
metrics:
- type: cos_sim_pearson value: 93.18498922236566
- type: cos_sim_spearman value: 93.26224500108704
- type: euclidean_pearson value: 92.25462061070286
- type: euclidean_spearman value: 93.18623989769242
- type: manhattan_pearson value: 92.16291103586255
- type: manhattan_spearman value: 93.14403078934417
- task:
type: 检索
dataset:
type: dbpedia-pl
name: MTEB DBPedia-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 8.268
- type: map_at_10 value: 17.391000000000002
- type: map_at_100 value: 24.266
- type: map_at_1000 value: 25.844
- type: map_at_3 value: 12.636
- type: map_at_5 value: 14.701
- type: mrr_at_1 value: 62.74999999999999
- type: mrr_at_10 value: 70.25200000000001
- type: mrr_at_100 value: 70.601
- type: mrr_at_1000 value: 70.613
- type: mrr_at_3 value: 68.083
- type: mrr_at_5 value: 69.37100000000001
- type: ndcg_at_1 value: 51.87500000000001
- type: ndcg_at_10 value: 37.185
- type: ndcg_at_100 value: 41.949
- type: ndcg_at_1000 value: 49.523
- type: ndcg_at_3 value: 41.556
- type: ndcg_at_5 value: 39.278
- type: precision_at_1 value: 63.24999999999999
- type: precision_at_10 value: 29.225
- type: precision_at_100 value: 9.745
- type: precision_at_1000 value: 2.046
- type: precision_at_3 value: 43.833
- type: precision_at_5 value: 37.9
- type: recall_at_1 value: 8.268
- type: recall_at_10 value: 22.542
- type: recall_at_100 value: 48.154
- type: recall_at_1000 value: 72.62100000000001
- type: recall_at_3 value: 13.818
- type: recall_at_5 value: 17.137
- task:
type: 检索
dataset:
type: fiqa-pl
name: MTEB FiQA-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 16.489
- type: map_at_10 value: 26.916
- type: map_at_100 value: 28.582
- type: map_at_1000 value: 28.774
- type: map_at_3 value: 23.048
- type: map_at_5 value: 24.977
- type: mrr_at_1 value: 33.642
- type: mrr_at_10 value: 41.987
- type: mrr_at_100 value: 42.882
- type: mrr_at_1000 value: 42.93
- type: mrr_at_3 value: 39.48
- type: mrr_at_5 value: 40.923
- type: ndcg_at_1 value: 33.488
- type: ndcg_at_10 value: 34.528
- type: ndcg_at_100 value: 41.085
- type: ndcg_at_1000 value: 44.474000000000004
- type: ndcg_at_3 value: 30.469
- type: ndcg_at_5 value: 31.618000000000002
- type: precision_at_1 value: 33.488
- type: precision_at_10 value: 9.783999999999999
- type: precision_at_100 value: 1.6389999999999998
- type: precision_at_1000 value: 0.22699999999999998
- type: precision_at_3 value: 20.525
- type: precision_at_5 value: 15.093
- type: recall_at_1 value: 16.489
- type: recall_at_10 value: 42.370000000000005
- type: recall_at_100 value: 67.183
- type: recall_at_1000 value: 87.211
- type: recall_at_3 value: 27.689999999999998
- type: recall_at_5 value: 33.408
- task:
type: 检索
dataset:
type: hotpotqa-pl
name: MTEB HotpotQA-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 37.373
- type: map_at_10 value: 57.509
- type: map_at_100 value: 58.451
- type: map_at_1000 value: 58.524
- type: map_at_3 value: 54.064
- type: map_at_5 value: 56.257999999999996
- type: mrr_at_1 value: 74.895
- type: mrr_at_10 value: 81.233
- type: mrr_at_100 value: 81.461
- type: mrr_at_1000 value: 81.47
- type: mrr_at_3 value: 80.124
- type: mrr_at_5 value: 80.862
- type: ndcg_at_1 value: 74.747
- type: ndcg_at_10 value: 66.249
- type: ndcg_at_100 value: 69.513
- type: ndcg_at_1000 value: 70.896
- type: ndcg_at_3 value: 61.312
- type: ndcg_at_5 value: 64.132
- type: precision_at_1 value: 74.747
- type: precision_at_10 value: 13.873
- type: precision_at_100 value: 1.641
- type: precision_at_1000 value: 0.182
- type: precision_at_3 value: 38.987
- type: precision_at_5 value: 25.621
- type: recall_at_1 value: 37.373
- type: recall_at_10 value: 69.365
- type: recall_at_100 value: 82.039
- type: recall_at_1000 value: 91.148
- type: recall_at_3 value: 58.48100000000001
- type: recall_at_5 value: 64.051
- task:
type: 检索
dataset:
type: msmarco-pl
name: MTEB MSMARCO-PL
config: 默认
split: 验证
revision: 无
metrics:
- type: map_at_1 value: 16.753999999999998
- type: map_at_10 value: 26.764
- type: map_at_100 value: 27.929
- type: map_at_1000 value: 27.994999999999997
- type: map_at_3 value: 23.527
- type: map_at_5 value: 25.343
- type: mrr_at_1 value: 17.192
- type: mrr_at_10 value: 27.141
- type: mrr_at_100 value: 28.269
- type: mrr_at_1000 value: 28.327999999999996
- type: mrr_at_3 value: 23.906
- type: mrr_at_5 value: 25.759999999999998
- type: ndcg_at_1 value: 17.177999999999997
- type: ndcg_at_10 value: 32.539
- type: ndcg_at_100 value: 38.383
- type: ndcg_at_1000 value: 40.132
- type: ndcg_at_3 value: 25.884
- type: ndcg_at_5 value: 29.15
- type: precision_at_1 value: 17.177999999999997
- type: precision_at_10 value: 5.268
- type: precision_at_100 value: 0.823
- type: precision_at_1000 value: 0.097
- type: precision_at_3 value: 11.122
- type: precision_at_5 value: 8.338
- type: recall_at_1 value: 16.753999999999998
- type: recall_at_10 value: 50.388
- type: recall_at_100 value: 77.86999999999999
- type: recall_at_1000 value: 91.55
- type: recall_at_3 value: 32.186
- type: recall_at_5 value: 40.048
- task:
type: 分类
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: 测试
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: 准确率 value: 70.9280430396772
- type: f1 value: 68.7099581466286
- task:
type: 分类
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: 测试
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: 准确率 value: 74.76126429051783
- type: f1 value: 74.72274307018111
- task:
type: 检索
dataset:
type: nfcorpus-pl
name: MTEB NFCorpus-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 5.348
- type: map_at_10 value: 12.277000000000001
- type: map_at_100 value: 15.804000000000002
- type: map_at_1000 value: 17.277
- type: map_at_3 value: 8.783000000000001
- type: map_at_5 value: 10.314
- type: mrr_at_1 value: 43.963
- type: mrr_at_10 value: 52.459999999999994
- type: mrr_at_100 value: 53.233
- type: mrr_at_1000 value: 53.26499999999999
- type: mrr_at_3 value: 50.464
- type: mrr_at_5 value: 51.548
- type: ndcg_at_1 value: 40.711999999999996
- type: ndcg_at_10 value: 33.709
- type: ndcg_at_100 value: 31.398
- type: ndcg_at_1000 value: 40.042
- type: ndcg_at_3 value: 37.85
- type: ndcg_at_5 value: 36.260999999999996
- type: precision_at_1 value: 43.344
- type: precision_at_10 value: 25.851000000000003
- type: precision_at_100 value: 8.279
- type: precision_at_1000 value: 2.085
- type: precision_at_3 value: 36.326
- type: precision_at_5 value: 32.074000000000005
- type: recall_at_1 value: 5.348
- type: recall_at_10 value: 16.441
- type: recall_at_100 value: 32.975
- type: recall_at_1000 value: 64.357
- type: recall_at_3 value: 9.841999999999999
- type: recall_at_5 value: 12.463000000000001
- task:
type: 检索
dataset:
type: nq-pl
name: MTEB NQ-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 24.674
- type: map_at_10 value: 37.672
- type: map_at_100 value: 38.767
- type: map_at_1000 value: 38.82
- type: map_at_3 value: 33.823
- type: map_at_5 value: 36.063
- type: mrr_at_1 value: 27.839000000000002
- type: mrr_at_10 value: 40.129
- type: mrr_at_100 value: 41.008
- type: mrr_at_1000 value: 41.048
- type: mrr_at_3 value: 36.718
- type: mrr_at_5 value: 38.841
- type: ndcg_at_1 value: 27.839000000000002
- type: ndcg_at_10 value: 44.604
- type: ndcg_at_100 value: 49.51
- type: ndcg_at_1000 value: 50.841
- type: ndcg_at_3 value: 37.223
- type: ndcg_at_5 value: 41.073
- type: precision_at_1 value: 27.839000000000002
- type: precision_at_10 value: 7.5
- type: precision_at_100 value: 1.03
- type: precision_at_1000 value: 0.116
- type: precision_at_3 value: 17.005
- type: precision_at_5 value: 12.399000000000001
- type: recall_at_1 value: 24.674
- type: recall_at_10 value: 63.32299999999999
- type: recall_at_100 value: 85.088
- type: recall_at_1000 value: 95.143
- type: recall_at_3 value: 44.157999999999994
- type: recall_at_5 value: 53.054
- task:
type: 分类
dataset:
type: laugustyniak/abusive-clauses-pl
name: MTEB PAC
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 64.5033304373009
- type: ap value: 75.81507275237081
- type: f1 value: 62.24617820785985
- task:
type: 配对分类
dataset:
type: PL-MTEB/ppc-pairclassification
name: MTEB PPC
config: 默认
split: 测试
revision: 无
metrics:
- type: cos_sim_accuracy value: 85.39999999999999
- type: cos_sim_ap value: 91.75881977787009
- type: cos_sim_f1 value: 87.79264214046823
- type: cos_sim_precision value: 88.68243243243244
- type: cos_sim_recall value: 86.9205298013245
- type: dot_accuracy value: 71.0
- type: dot_ap value: 82.97829049033108
- type: dot_f1 value: 78.77055039313797
- type: dot_precision value: 69.30817610062893
- type: dot_recall value: 91.22516556291392
- type: euclidean_accuracy value: 85.2
- type: euclidean_ap value: 91.85245521151309
- type: euclidean_f1 value: 87.64607679465777
- type: euclidean_precision value: 88.38383838383838
- type: euclidean_recall value: 86.9205298013245
- type: manhattan_accuracy value: 85.39999999999999
- type: manhattan_ap value: 91.85497100160649
- type: manhattan_f1 value: 87.77219430485762
- type: manhattan_precision value: 88.8135593220339
- type: manhattan_recall value: 86.75496688741721
- type: max_accuracy value: 85.39999999999999
- type: max_ap value: 91.85497100160649
- type: max_f1 value: 87.79264214046823
- task:
type: 配对分类
dataset:
type: PL-MTEB/psc-pairclassification
name: MTEB PSC
config: 默认
split: 测试
revision: 无
metrics:
- type: cos_sim_accuracy value: 97.58812615955473
- type: cos_sim_ap value: 99.14945370088302
- type: cos_sim_f1 value: 96.06060606060606
- type: cos_sim_precision value: 95.48192771084338
- type: cos_sim_recall value: 96.64634146341463
- type: dot_accuracy value: 95.17625231910947
- type: dot_ap value: 97.05592933601112
- type: dot_f1 value: 92.14501510574019
- type: dot_precision value: 91.31736526946108
- type: dot_recall value: 92.98780487804879
- type: euclidean_accuracy value: 97.6808905380334
- type: euclidean_ap value: 99.18538119402824
- type: euclidean_f1 value: 96.20637329286798
- type: euclidean_precision value: 95.77039274924472
- type: euclidean_recall value: 96.64634146341463
- type: manhattan_accuracy value: 97.58812615955473
- type: manhattan_ap value: 99.17870990853292
- type: manhattan_f1 value: 96.02446483180427
- type: manhattan_precision value: 96.31901840490798
- type: manhattan_recall value: 95.73170731707317
- type: max_accuracy value: 97.6808905380334
- type: max_ap value: 99.18538119402824
- type: max_f1 value: 96.20637329286798
- task:
type: 分类
dataset:
type: PL-MTEB/polemo2_in
name: MTEB PolEmo2.0-IN
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 68.69806094182825
- type: f1 value: 68.0619984307764
- task:
type: 分类
dataset:
type: PL-MTEB/polemo2_out
name: MTEB PolEmo2.0-OUT
config: 默认
split: 测试
revision: 无
metrics:
- type: 准确率 value: 35.80971659919028
- type: f1 value: 31.13081621324864
- task:
type: 检索
dataset:
type: quora-pl
name: MTEB Quora-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 66.149
- type: map_at_10 value: 80.133
- type: map_at_100 value: 80.845
- type: map_at_1000 value: 80.866
- type: map_at_3 value: 76.983
- type: map_at_5 value: 78.938
- type: mrr_at_1 value: 76.09
- type: mrr_at_10 value: 83.25099999999999
- type: mrr_at_100 value: 83.422
- type: mrr_at_1000 value: 83.42500000000001
- type: mrr_at_3 value: 82.02199999999999
- type: mrr_at_5 value: 82.831
- type: ndcg_at_1 value: 76.14999999999999
- type: ndcg_at_10 value: 84.438
- type: ndcg_at_100 value: 86.048
- type: ndcg_at_1000 value: 86.226
- type: ndcg_at_3 value: 80.97999999999999
- type: ndcg_at_5 value: 82.856
- type: precision_at_1 value: 76.14999999999999
- type: precision_at_10 value: 12.985
- type: precision_at_100 value: 1.513
- type: precision_at_1000 value: 0.156
- type: precision_at_3 value: 35.563
- type: precision_at_5 value: 23.586
- type: recall_at_1 value: 66.149
- type: recall_at_10 value: 93.195
- type: recall_at_100 value: 98.924
- type: recall_at_1000 value: 99.885
- type: recall_at_3 value: 83.439
- type: recall_at_5 value: 88.575
- task:
type: 检索
dataset:
type: scidocs-pl
name: MTEB SCIDOCS-PL
config: 默认
split: 测试
revision: 无
metrics:
- type: map_at_1 value: 3.688
- type: map_at_10 value: 10.23
- type: map_at_100 value: 12.077
- type: map_at_1000 value: 12.382
- type: map_at_3 value: 7.149
- type: map_at_5 value: 8.689
- type: mrr_at_1 value: 18.2
- type: mrr_at_10 value: 28.816999999999997
- type: mrr_at_100 value: 29.982
- type: mrr_at_1000 value: 30.058
- type: mrr_at_3 value: 25.983
- type: mrr_at_5 value: 27.418
- type: ndcg_at_1 value: 18.2
- type: ndcg_at_10 value: 17.352999999999998
- type: ndcg_at_100 value: 24.859
- type: ndcg_at_1000 value: 30.535
- type: ndcg_at_3 value: 16.17
- type: ndcg_at_5 value: 14.235000000000001
- type: precision_at_1 value: 18.2
- type: precision_at_10 value: 9.19
- type: precision_at_100 value: 2.01
- type: precision_at_1000 value: 0.338
- type: precision_at_3 value: 15.5
- type: precision_at_5 value: 12.78
- type: recall_at_1 value: 3.688
- type: recall_at_10 value: 18.632
- type: recall_at_100 value: 40.822
- type: recall_at_1000 value: 68.552
- type: recall_at_3 value: 9.423
- type: recall_at_5 value: 12.943
- task: type: 配对分类 dataset: type: PL-MTEB/sicke-pl-pairclassification name: MTEB SICK-E-PL config: 默认 split: 测试 revision: 无
- task:
type: 聚类
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: 默认
split: 测试
revision: 无
metrics:
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers

支持多种语言
J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入
英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers

英语
O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入
英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入
英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers

支持多种语言
G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers

支持多种语言
G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers

其他
B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors
英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers

支持多种语言
L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers

英语
C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统
中文
R
uer
2,694
98
AIbase是一个专注于MCP服务的平台,为AI开发者提供高质量的模型上下文协议服务,助力AI应用开发。
简体中文