license: other
license_name: qwen
license_link: https://huggingface.co/huihui-ai/QVQ-72B-Preview-abliterated-GPTQ-Int8/blob/main/LICENSE
language:
- en
pipeline_tag: image-text-to-text
base_model: huihui-ai/QVQ-72B-Preview-abliterated
tags:
- abliterated
- uncensored
- chat
library_name: transformers
这是huihui-ai/QVQ-72B-Preview-abliterated的GPTQ量化8位版本。
本次仅为GPTQ量化测试,仅包含一个数据集:"gptqmodel是一个基于GPTQ算法、具有友好API的易用模型量化库"。
如需自定义数据集,请联系我们:support@huihui.ai
使用说明
我们提供工具包助您便捷处理各类视觉输入(包括base64、URL及交错排列的图片视频),安装命令如下:
pip install qwen-vl-utils
以下代码片段展示如何结合transformers
与qwen_vl_utils
使用聊天模型:
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2VLForConditionalGeneration.from_pretrained(
"huihui-ai/QVQ-72B-Preview-abliterated-GPTQ-Int8", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("huihui-ai/QVQ-72B-Preview-abliterated-GPTQ-Int8")
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "你是一个无害且乐于助人的助手。你是阿里巴巴开发的Qwen模型,应当逐步思考问题。"}
],
},
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/QVQ/demo.png",
},
{"type": "text", "text": "空白处应填入什么数值?"},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=8192)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)