基础模型:
- ds4sd/SmolDocling-256M-preview
语言:
- en
库名称: transformers
许可证: cdla-permissive-2.0
管道标签: image-text-to-text
标签:
- mlx
SmolDocling-256M-preview-mlx-bf16
此模型使用mlx-vlm版本0.1.18从ds4sd/SmolDocling-256M-preview
转换为MLX格式。
包含适用于Docling-Snap的配置文件。
更多模型详情请参考原始模型卡片。
使用MLX运行
pip install -U mlx-vlm pillow docling-core
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
import requests
from PIL import Image
from docling_core.types.doc import ImageRefMode
from docling_core.types.doc.document import DocTagsDocument, DoclingDocument
from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config, stream_generate
SHOW_IN_BROWSER = True
model_path = "ds4sd/SmolDocling-256M-preview-mlx-bf16"
model, processor = load(model_path)
config = load_config(model_path)
prompt = "将此页面转换为docling格式。"
image = "https://ibm.biz/docling-page-with-table"
if urlparse(image).scheme != "":
response = requests.get(image, stream=True, timeout=10)
response.raise_for_status()
pil_image = Image.open(BytesIO(response.content))
else:
pil_image = Image.open(image)
formatted_prompt = apply_chat_template(processor, config, prompt, num_images=1)
print("文档标签: \n\n")
output = ""
for token in stream_generate(
model, processor, formatted_prompt, [image], max_tokens=4096, verbose=False
):
output += token.text
print(token.text, end="")
if "</doctag>" in token.text:
break
print("\n\n")
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([output], [pil_image])
doc = DoclingDocument(name="示例文档")
doc.load_from_doctags(doctags_doc)
print("Markdown格式: \n\n")
print(doc.export_to_markdown())
if SHOW_IN_BROWSER:
import webbrowser
out_path = Path("./output.html")
doc.save_as_html(out_path, image_mode=ImageRefMode.EMBEDDED)
webbrowser.open(f"file:///{str(out_path.resolve())}")