许可协议: cc-by-nc-4.0
语言:
越南语自动语音识别(ASR)序列到序列模型。该模型支持输出规范化文本、标记时间戳以及多说话人分段。
from transformers import SpeechEncoderDecoderModel
from transformers import AutoFeatureExtractor, AutoTokenizer, GenerationConfig
import torchaudio
import torch
model_path = 'nguyenvulebinh/wav2vec2-bartpho'
model = SpeechEncoderDecoderModel.from_pretrained(model_path).eval()
feature_extractor = AutoFeatureExtractor.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
if torch.cuda.is_available():
model = model.cuda()
def decode_tokens(token_ids, skip_special_tokens=True, time_precision=0.02):
timestamp_begin = tokenizer.vocab_size
outputs = [[]]
for token in token_ids:
if token >= timestamp_begin:
timestamp = f" |{(token - timestamp_begin) * time_precision:.2f}| "
outputs.append(timestamp)
outputs.append([])
else:
outputs[-1].append(token)
outputs = [
s if isinstance(s, str) else tokenizer.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs
]
return "".join(outputs).replace("< |", "<|").replace("| >", "|>")
def decode_wav(audio_wavs, asr_model, prefix=""):
device = next(asr_model.parameters()).device
input_values = feature_extractor.pad(
[{"input_values": feature} for feature in audio_wavs],
padding=True,
max_length=None,
pad_to_multiple_of=None,
return_tensors="pt",
)
output_beam_ids = asr_model.generate(
input_values['input_values'].to(device),
attention_mask=input_values['attention_mask'].to(device),
decoder_input_ids=tokenizer.batch_encode_plus([prefix] * len(audio_wavs), return_tensors="pt")['input_ids'][..., :-1].to(device),
generation_config=GenerationConfig(decoder_start_token_id=tokenizer.bos_token_id),
max_length=250,
num_beams=25,
no_repeat_ngram_size=4,
num_return_sequences=1,
early_stopping=True,
return_dict_in_generate=True,
output_scores=True,
)
output_text = [decode_tokens(sequence) for sequence in output_beam_ids.sequences]
return output_text
print(decode_wav([torchaudio.load('sample_news.wav')[0].squeeze()], model))
引用
本仓库使用了以下论文中的思想。如果该模型有助于发表成果或被整合到其他软件中,请引用该论文。
@INPROCEEDINGS{10446589,
author={Nguyen, Thai-Binh and Waibel, Alexander},
booktitle={ICASSP 2024 - 2024 IEEE国际声学、语音与信号处理会议(ICASSP)},
title={合成对话改进多说话人ASR},
year={2024},
volume={},
number={},
pages={10461-10465},
keywords={系统性;错误分析;基于知识的系统;口头交流;信号处理;数据模型;声学;多说话人;ASR;合成对话},
doi={10.1109/ICASSP48485.2024.10446589}
}
联系方式
nguyenvulebinh@gmail.com
