Gte Base Ko
基于Alibaba-NLP/gte-multilingual-base模型在韩语三元组数据集上微调的句子嵌入模型,用于语义相似度计算
下载量 18
发布时间 : 11/17/2024
模型简介
这是一个基于Alibaba-NLP/gte-multilingual-base模型,在韩语三元组数据集nlpai-lab/ko-triplet-v1.0上微调的句子转换器模型。它将句子和段落映射到768维密集向量空间,可用于语义文本相似性、语义搜索、文本分类等任务。
模型特点
韩语优化
专门针对韩语文本进行优化,在韩语三元组数据集上微调
长文本支持
支持最大8192个标记的序列长度,适合处理长文本
高准确度
在评估数据集上达到98.55%的余弦准确度
模型能力
语义文本相似度计算
语义搜索
文本分类
聚类分析
特征提取
使用案例
信息检索
相似文档检索
根据查询文本查找语义相似的文档
文本分析
文本聚类
将语义相似的文本自动分组
🚀 基于Alibaba-NLP/gte-multilingual-base的句子转换器模型
这是一个基于 sentence-transformers 库,在 nlpai-lab/ko-triplet-v1.0 数据集上对 Alibaba-NLP/gte-multilingual-base 模型进行微调得到的模型。它能将句子和段落映射到768维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
直接使用(Sentence Transformers)
首先,安装 Sentence Transformers
库:
pip install -U sentence-transformers
然后,你可以加载该模型并进行推理:
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("scottsuk0306/gte-base-ko")
# 进行推理
sentences = [
'중, 인사하다, 시주하다, 치다, 사람, 목탁',
'그 중은 시주한 사람에게 목탁을 치며 인사를 했다.',
'재주라는 것은 예절, 음악, 활쏘기, 글쓰기, 말타기, 계산하기다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 基于
Sentence Transformers
框架,可将文本转换为768维的向量表示。 - 在韩语三元组数据集上进行微调,适用于韩语语义相关任务。
- 支持多种相似度计算指标,如余弦相似度、点积相似度等。
📦 安装指南
安装 Sentence Transformers
库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("scottsuk0306/gte-base-ko")
# 进行推理
sentences = [
'중, 인사하다, 시주하다, 치다, 사람, 목탁',
'그 중은 시주한 사람에게 목탁을 치며 인사를 했다.',
'재주라는 것은 예절, 음악, 활쏘기, 글쓰기, 말타기, 계산하기다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | Alibaba-NLP/gte-multilingual-base |
最大序列长度 | 8192个词元 |
输出维度 | 768个词元 |
相似度函数 | 余弦相似度 |
训练数据集 | nlpai-lab/ko-triplet-v1.0 |
语言 | 韩语 |
模型来源
- 文档:Sentence Transformers 文档
- 仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
评估
指标
指标 | 值 |
---|---|
余弦准确率 | 0.9855 |
点积准确率 | 0.0145 |
曼哈顿准确率 | 0.9855 |
欧几里得准确率 | 0.9855 |
最大准确率 | 0.9855 |
训练详情
训练数据集
- 数据集:nlpai-lab/ko-triplet-v1.0
- 大小:10,000个训练样本
- 列:
anchor
、positive
和negative
- 基于前1000个样本的近似统计信息:
锚点 正样本 负样本 类型 字符串 字符串 字符串 详情 - 最小:9个词元
- 平均:22.12个词元
- 最大:146个词元
- 最小:10个词元
- 平均:92.69个词元
- 最大:1815个词元
- 最小:8个词元
- 平均:99.24个词元
- 最大:880个词元
- 样本:
锚点 正样本 负样本 글쓰기, 대회, 참가료, 받다
글쓰기 대회는 참가자한테 일정분의 참가료를 받았다.
재주는 예절, 음악, 활쏘기, 글쓰기, 말타기, 계산하기 등등 이다.
"K리그 2002 시즌"에서 기록한 관객의 수보다 독일 고틀리프 다임러 경기장에서 개최된 "제4회 세계 육상 선수권 대회"의 관객 수가 많았나?
1993년 세계 육상 선수권 대회. 제4회 세계 육상 선수권 대회는 국제 육상 경기 연맹 주관으로 1993년 8월 13일에서 8월 22일까지 독일 슈투트가르트 고틀리프 다임러 경기장에서 열린 국제 육상 대회이다. 독일에서 열린 첫 번째 세계 육상 선수권 대회였다. 187개국 선수 1630명이 참가했으며, 대회 역사상 가장 많은 수인 58만 5000명의 관중이 입장했다.
송강호. 경력. 1996-2000: 초기 경력과 주목 받다. 1999년에는 강제규 감독의 영화 《쉬리》에 이장길 역할로 출연했다. 이 영화는 관객수 582만 명을 기록하며 당시 국내 최다 관객 영화 기록을 갱신했고, 최초로 500만 관객을 넘어섰다. 2000년에는 코미디 영화 《반칙왕》에서 첫 주연을 맡았다. 이 영화에서 그는 은행원이자 레슬러 대호 역할로 캐스팅 되어 영화를 위해 레슬링 훈련을 했었다. 이후 송강호는 이 영화가 가장 인상 깊다고 꼽으며 "물리적으로 가장 극한의 상황까지 간 작품이었다는 생각이 든다. 만약 지금 레슬링을 다시 한다면 죽을 거다"라고 말했다. 같은 해 그는 박찬욱 감독의 영화 《공동경비구역 JSA》에서 오경필 중사 역할로 출연했다. 이 영화는 이전까지 반공이데올로기에서 벗어나지 못했던 분단 소재 한국영화의 시각을 인간애로 확장한 작품으로 583만 명의 관객수를 기록하며 역대 흥행 1위 영화로 기록했다. 송강호는 2019년 매체와의 인터뷰에서 배우 인생의 전환점이 됐다고 언급하며 “두 영화가 개봉한 2000년은 배우 생활 초반의 분기점이 됐다”고 말했다. 한 영화 관계자는 송강호에게 "《반칙왕》에서 보여준뛰어난 연기를 보고 그 이상의 연기는 나올 수 없을 것이라 생각했다. 이번 영화를 보고 내가 당신 연기의 한계를 너무 낮게 잡았음을 알았다"고 말했다. 《매일경제》의 프리뷰에서는 "송강호가 그려낸 따뜻하고 넉넉한 오경필 중사는 군기가 한참 빠져 서로 노닥거리는 것으로 비칠수도 있는 모습들을 눈물나는 형제애로 잡아주는 든든한 받침대다"라고 리뷰했다. 이러한 호평 속에 제1회 부산영화평론가협회상, 제38회 대종상영화제, 제3회 도빌아시아영화제, 에서 남우주연상을 수상했고, 이 외에도 백상예술대상에서 인기상을 받는 등 다수의 시상식에서 연기력과 스타성에서 인정을 받았다.
트리거는 데이터를 저장시켜?
트리거는 안테나 시험 장비를 구동시켜 시나리오를 발생시키며, 시나리오에 따라 안테나부의 송신기와 수신기를 제어 및 측정하여 데이터를 저장하 게 된다.
영화관에서는 왜 대부분의 관객이 실감나게 소리가 잘 들리는 걸까? 디자인이 Ugly하지만 왜 CRT일때는 소리가 잘 들렸을까? 이런 질문에 대한 해답을 영화관 스크린속에서 찾을 수 있었다.
- 损失函数:
MultipleNegativesRankingLoss
,参数如下:{ "scale": 20.0, "similarity_fct": "cos_sim" }
评估数据集
- 数据集:nlpai-lab/ko-triplet-v1.0
- 大小:3,724个评估样本
- 列:
anchor
、positive
和negative
- 基于前1000个样本的近似统计信息:
锚点 正样本 负样本 类型 字符串 字符串 字符串 详情 - 最小:6个词元
- 平均:21.63个词元
- 最大:143个词元
- 最小:8个词元
- 平均:88.89个词元
- 最大:2003个词元
- 最小:10个词元
- 平均:102.66个词元
- 最大:3190个词元
- 样本:
锚点 正样本 负样本 지하, 차도, 빠져나가다, 우회전, 하다, 목적지, 도착하다
지하 차도를 재빨리 빠져나가자마자 우회전을 하면 목적지에 도착한다.
재주라는 것은 예절, 음악, 활쏘기, 글쓰기, 말타기, 계산하기다.
본문의 표 6에서 packet length = 0.5이고 노드수가 4일 때 Basic CSMA/CA의 수학적분석값은 얼마일까?
표 6. 패킷 길이에 따른 IEEE 802.11 MAC 프로토콜의 시뮬레이션 결과와 Analytic 결과 비교 노드의 수 packet length = 0.5 packet length = 0.3 Basic CSMA/CA RTS/CTS 프로토콜 Basic CSMA/CA RTS/CTS 프로토콜 시뮬레이션 수학적분석 시뮬레이션 수학적분석 시뮬레이션 수학적분석 시뮬레이션 수학적분석 1 0.670 0.672 0.682 0.673 0.625 0.625 0.570 0.571 2 0.772 0.770 0.746 0.735 0.708 0.710 0.650 0.652 3 0.779 0.781 0.780 0.772 0.739 0.738 0.690 0.690 4 0.780 0.783 0.785 0.784 0.740 0.741 0.700 0.701 5 0.780 0.782 0.811 0.797 0.739 0.738 0.710 0.713 6 0.780 0.782 0.811 0.810 0.735 0.735 0.720 0.720 7 0.764 0.752 0.812 0.811 0.731 0.728 0.728 0.729 8 0.753 0.748 0.815 0.814 0.700 0.701 0.730 0.731 9 0.750 0.746 0.816 0.816 0.690 0.687 0.735 0.733 10 0.742 0.741 0.821 0.820 0.675 0.672 0.735 0.734 15 0.730 0.728 0.821 0.822 0.650 0.651 0.735 0.736 20 0.686 0.681 0.821 0.822 0.630 0.630 0.740 0.741 표 5 및 6은 수학적 분석의 결과값과 컴퓨터 시뮬레이션을 한 결과값을 비교한 표이다.
점심시간, 유산소, 운동, 하다
건강을 위하여 점심시간에 유산소 운동을 했다.
흑미밥과 바지락미역국, 닭볶음, 냉이무침, 무말랭이, 배추김치가 오늘 점심이다.
- 损失函数:
MultipleNegativesRankingLoss
,参数如下:{ "scale": 20.0, "similarity_fct": "cos_sim" }
训练超参数
非默认超参数
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 1e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truepush_to_hub
: Truehub_model_id
: scottsuk0306/gte-base-kobatch_sampler
: no_duplicates
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: scottsuk0306/gte-base-kohub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
训练日志
轮次 | 步数 | 训练损失 | 开发集最大准确率 |
---|---|---|---|
0 | 0 | - | 0.9855 |
0.16 | 100 | 0.137 | - |
0.32 | 200 | 0.0573 | - |
0.48 | 300 | 0.0488 | - |
0.64 | 400 | 0.0494 | - |
0.8 | 500 | 0.0441 | - |
0.96 | 600 | 0.0189 | - |
框架版本
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 1.1.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1
📄 许可证
文档中未提及相关许可证信息。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98
智启未来,您的人工智能解决方案智库
简体中文