许可证: mit
数据集:
- numind/NuNER
语言:
- en
任务标签: 自动语音识别
标签:
- asr
- 自动语音识别
- Whisper
- 命名实体识别
Whisper-NER
- 演示: https://huggingface.co/spaces/aiola/whisper-ner-v1
- 论文: WhisperNER: 统一开放的命名实体与语音识别
- 代码: https://github.com/aiola-lab/whisper-ner
我们推出了WhisperNER,这是一种新颖的模型,能够同时进行语音转录和实体识别。
WhisperNER支持开放类型的命名实体识别(NER),能够在推理时识别多样且不断变化的实体。
WhisperNER模型设计为一个强大的基础模型,适用于带有NER的自动语音识别(ASR)下游任务,并可以通过在特定数据集上进行微调以提升性能。
训练详情
aiola/whisper-ner-v1
是在NuNER数据集上训练的,用于同时执行音频转录和NER标记。
该模型仅在英语数据上进行了训练和评估。完整细节请参阅论文。
使用方法
可以使用以下代码进行推理(更多推理代码和细节请查看whisper-ner仓库):
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
model_path = "aiola/whisper-ner-v1"
audio_file_path = "path/to/audio/file"
prompt = "person, company, location"
processor = WhisperProcessor.from_pretrained(model_path)
model = WhisperForConditionalGeneration.from_pretrained(model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
target_sample_rate = 16000
signal, sampling_rate = torchaudio.load(audio_file_path)
resampler = torchaudio.transforms.Resample(sampling_rate, target_sample_rate)
signal = resampler(signal)
if signal.ndim == 2:
signal = torch.mean(signal, dim=0)
input_features = processor(
signal, sampling_rate=target_sample_rate, return_tensors="pt"
).input_features
input_features = input_features.to(device)
prompt_ids = processor.get_prompt_ids(prompt.lower(), return_tensors="pt")
prompt_ids = prompt_ids.to(device)
with torch.no_grad():
predicted_ids = model.generate(
input_features,
prompt_ids=prompt_ids,
generation_config=model.generation_config,
language="en",
)
transcription = processor.batch_decode(
predicted_ids, skip_special_tokens=True
)[0]
print(transcription)