语言:
- tr
管道标签: 句子相似度
标签:
- 句子转换器
- 特征提取
- 句子相似度
- 转换器
数据集:
- nli_tr
- emrecan/stsb-mt-turkish
许可证: mit
库名称: sentence-transformers
基础模型: ytu-ce-cosmos/turkish-mini-bert-uncased
turkish-mini-bert-uncased-mean-nli-stsb-tr
这是一个sentence-transformers模型:它将句子和段落映射到一个256维的密集向量空间,可用于聚类或语义搜索等任务。
该模型基于ytu-ce-cosmos/turkish-mini-bert-uncased调整,并在以下数据集上进行了微调:
⚠️ 所有文本均已手动转换为小写,如模型作者所述:
text.replace("I", "ı").lower()
使用方法 (Sentence-Transformers)
安装sentence-transformers后,使用此模型变得非常简单:
pip install -U sentence-transformers
然后可以像这样使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["这是一个示例句子", "每个句子都会被转换"]
model = SentenceTransformer('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
embeddings = model.encode(sentences)
print(embeddings)
使用方法 (HuggingFace Transformers)
如果没有安装sentence-transformers,可以这样使用模型:首先将输入传递给转换器模型,然后必须在上下文化的词嵌入上应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["这是一个示例句子", "每个句子都会被转换"]
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
model = AutoModel.from_pretrained('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入:")
print(sentence_embeddings)
评估结果
在STS-b测试集上取得的结果如下:
余弦相似度: Pearson: 0.8117 Spearman: 0.8074
曼哈顿距离: Pearson: 0.8029 Spearman: 0.7972
欧几里得距离: Pearson: 0.8028 Spearman: 0.7977
点积相似度: Pearson: 0.7563 Spearman: 0.7435
训练
模型训练时使用的参数:
数据加载器:
torch.utils.data.dataloader.DataLoader
,长度为45,参数如下:
{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()方法的参数:
{
"epochs": 10,
"evaluation_steps": 4,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 45,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者