language:
- tr
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- nli_tr
- emrecan/stsb-mt-turkish
license: mit
library_name: sentence-transformers
base_model: ytu-ce-cosmos/turkish-base-bert-uncased
土耳其语基础BERT无大写均值NLI-STSB模型
这是一个sentence-transformers模型:它能将句子和段落映射到768维稠密向量空间,适用于聚类或语义搜索等任务。
本模型基于ytu-ce-cosmos/turkish-base-bert-uncased微调,训练数据集包括:
⚠️ 所有文本需手动转为小写,如模型作者所述:
text.replace("I", "ı").lower()
使用方式(Sentence-Transformers)
安装sentence-transformers后即可使用:
pip install -U sentence-transformers
调用示例:
from sentence_transformers import SentenceTransformer
sentences = ["这是一个示例句子", "每个句子都会被转换"]
model = SentenceTransformer('atasoglu/turkish-base-bert-uncased-mean-nli-stsb-tr')
embeddings = model.encode(sentences)
print(embeddings)
使用方式(HuggingFace Transformers)
若不使用sentence-transformers库,可按以下方式操作:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["这是一个示例句子", "每个句子都会被转换"]
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-base-bert-uncased-mean-nli-stsb-tr')
model = AutoModel.from_pretrained('atasoglu/turkish-base-bert-uncased-mean-nli-stsb-tr')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入向量:")
print(sentence_embeddings)
评估结果
在STS-b测试集上的表现:
余弦相似度: Pearson: 0.8401 Spearman: 0.8410
曼哈顿距离: Pearson: 0.8256 Spearman: 0.8261
欧氏距离: Pearson: 0.8261 Spearman: 0.8268
点积相似度: Pearson: 0.7823 Spearman: 0.7723
训练参数
数据加载器:
长度90的torch.utils.data.dataloader.DataLoader
,参数为:
{'batch_size': 64, 'sampler': '随机采样器', 'batch_sampler': '批采样器'}
损失函数:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
训练方法参数:
{
"epochs": 4,
"评估步数": 9,
"评估器": "嵌入相似度评估器",
"最大梯度范数": 1,
"优化器": "AdamW",
"学习率": 2e-05,
"调度器": "线性预热",
"预热步数": 36,
"权重衰减": 0.01
}
模型架构
SentenceTransformer(
(0): Transformer({'最大序列长度': 256, '小写转换': False}) with BertModel
(1): Pooling({
'词嵌入维度': 768,
'CLS标记池化': False,
'均值标记池化': True,
'最大标记池化': False
})
)