pipeline_tag: 句子相似度
tags:
- 句子转换器
- 特征提取
- 句子相似度
- 转换器
license: mit
datasets:
- stsb_multi_mt
- unicamp-dl/mmarco
language:
- 意大利语
library_name: sentence-transformers
{多语句-BERTino}
这是一个sentence-transformers模型:它能将句子和段落映射到768维的密集向量空间,可用于聚类或语义搜索等任务。
该模型基于indigo-ai/BERTino训练,使用了意大利语的mmarco(20万条)和stsb数据集。
使用方法(Sentence-Transformers)
安装sentence-transformers后即可轻松使用此模型:
pip install -U sentence-transformers
然后可以像这样使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["一个女孩正在整理头发。", "一个女孩正在梳头发。"]
model = SentenceTransformer('nickprock/multi-sentence-BERTino')
embeddings = model.encode(sentences)
print(embeddings)
使用方法(FastEmbed)
安装FastEmbed后即可轻松使用此模型:
pip install fastembed
然后可以像这样使用模型:
from fastembed import TextEmbedding
from fastembed.common.model_description import PoolingType, ModelSource
sentences = ["一个女孩正在整理头发。", "一个女孩正在梳头发。"]
TextEmbedding.add_custom_model(
model="nickprock/multi-sentence-BERTino",
pooling=PoolingType.MEAN,
normalization=True,
sources=ModelSource(hf="nickprock/multi-sentence-BERTino"),
dim=768,
model_file="onnx/model_qint8_avx512_vnni.onnx",
)
model = TextEmbedding(model_name="nickprock/multi-sentence-BERTino")
embeddings = list(model.embed(sentences))
print(embeddings)
使用方法(HuggingFace Transformers)
如果没有安装sentence-transformers,可以这样使用模型:首先将输入传递给转换器模型,然后需要在上下文化的词嵌入之上应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['一个女孩正在整理头发。', '一个女孩正在梳头发。']
tokenizer = AutoTokenizer.from_pretrained('nickprock/multi-sentence-BERTino')
model = AutoModel.from_pretrained('nickprock/multi-sentence-BERTino')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入:")
print(sentence_embeddings)
评估结果
关于此模型的自动化评估,请参见句子嵌入基准:https://seb.sbert.net
训练
模型训练参数如下:
数据加载器:
torch.utils.data.dataloader.DataLoader
,长度31250,参数:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.TripletLoss.TripletLoss
,参数:
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
数据加载器:
torch.utils.data.dataloader.DataLoader
,长度360,参数:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
数据加载器:
torch.utils.data.dataloader.DataLoader
,长度31250,参数:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.CachedMultipleNegativesRankingLoss.CachedMultipleNegativesRankingLoss
,参数:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()方法的参数:
{
"epochs": 10,
"evaluation_steps": 500,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 1500,
"warmup_steps": 360,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
引用与作者