许可协议: cc-by-nc-4.0
语言:
- 日语
数据集:
- toshi456/LLaVA-CC3M-Pretrain-595K-JA
- turing-motors/LLaVA-Instruct-150K-JA
任务标签: 图像转文本
标签:
- 视觉
- 图像描述生成
- 视觉问答
LLaVA-JP 模型卡片
模型详情
模型类型:
LLaVA-JP 是一个能够就输入图像进行对话的视觉语言模型。
该模型通过使用 LLaVA 方法对 llm-jp/llm-jp-1.3b-v1.0 进行微调训练而成。
训练过程:
该模型首先使用 LLaVA-CC3M-Pretrain-595K-JA 和 STAIR Captions 数据集训练视觉投影器。
在第二阶段,使用 LLaVA-Instruct-150K-JA 和日语 Visual Genome 数据集进行微调。
更多信息请参考: https://github.com/tosiyuki/LLaVA-JP/tree/main
如何使用该模型
1. 下载依赖项
git clone https://github.com/tosiyuki/LLaVA-JP.git
2. 推理示例
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
from llava.train.dataset import tokenizer_image_token
if __name__ == "__main__":
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_path = 'toshi456/llava-jp-1.3b-v1.0'
model_args.vision_tower = "openai/clip-vit-large-patch14-336"
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model = LlavaGpt2ForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch_dtype,
device_map=device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1024,
padding_side="right",
use_fast=False,
)
model.eval()
conv_mode = "v1"
conv = conv_templates[conv_mode].copy()
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
if device == "cuda":
image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].half().cuda().to(torch_dtype)
else:
image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].to(torch_dtype)
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
input_ids = input_ids[:, :-1]
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
with torch.inference_mode():
model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=True,
temperature=0.01,
top_p=1.0,
max_new_tokens=256,
streamer=streamer,
use_cache=True,
)
"""笔记本电脑"""
训练数据集
第一阶段预训练
第二阶段微调
致谢
许可证
cc-by-nc-4.0