许可证: mit
语言:
- 拉丁语
数据集:
- CATMuS/medieval
标签:
- trocr
- 图像转文本
组件:
- 示例图片: https://huggingface.co/medieval-data/trocr-medieval-latin-caroline/resolve/main/images/heldout2.png
示例标题: 保留样本1
- 示例图片: https://huggingface.co/medieval-data/trocr-medieval-latin-caroline/resolve/main/images/heldout1.png
示例标题: 保留样本2

关于
这是一个针对中世纪拉丁语(特别是加洛林体)的TROcr模型。基础模型为microsoft/trocr-base-handwritten,基于CATMuS数据集中的样本进行了微调。
该模型尚未经过正式测试。初步检查表明需要进一步微调。
微调使用本代码库中的finetune.py完成。
使用方法
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests
https://huggingface.co/medieval-data/trocr-medieval-latin-caroline/resolve/main/images/heldout1.png
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
processor = TrOCRProcessor.from_pretrained('medieval-data/trocr-medieval-latin-caroline')
model = VisionEncoderDecoderModel.from_pretrained('medieval-data/trocr-medieval-latin-caroline')
pixel_values = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
参考文献与引用信息
TrOCR论文
@misc{li2021trocr,
title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
year={2021},
eprint={2109.10282},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
CATMuS论文
@unpublished{clerice:hal-04453952,
TITLE = {{CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond}},
AUTHOR = {Cl{\'e}rice, Thibault and Pinche, Ariane and Vlachou-Efstathiou, Malamatenia and Chagu{\'e}, Alix and Camps, Jean-Baptiste and Gille-Levenson, Matthias and Brisville-Fertin, Olivier and Fischer, Franz and Gervers, Michaels and Boutreux, Agn{\`e}s and Manton, Avery and Gabay, Simon and O'Connor, Patricia and Haverals, Wouter and Kestemont, Mike and Vandyck, Caroline and Kiessling, Benjamin},
URL = {https://inria.hal.science/hal-04453952},
NOTE = {working paper or preprint},
YEAR = {2024},
MONTH = Feb,
KEYWORDS = {Historical sources ; medieval manuscripts ; Latin scripts ; benchmarking dataset ; multilingual ; handwritten text recognition},
PDF = {https://inria.hal.science/hal-04453952/file/ICDAR24___CATMUS_Medieval-1.pdf},
HAL_ID = {hal-04453952},
HAL_VERSION = {v1},
}