pipeline_tag: 图像转文本
tags:
- 图像描述生成
languages:
- 英文
license: bsd-3-clause
BLIP:通过语言-图像联合预训练实现统一视觉语言理解与生成
基于COCO数据集预训练的图像描述生成模型卡片 - 基础架构(采用ViT大型骨干网络)。
 |
图片引自BLIP官方仓库 |
摘要速览
论文作者在摘要中写道:
视觉语言预训练(VLP)推动了多模态任务的性能提升。然而现有预训练模型往往仅擅长理解型或生成型任务中的单一类别。当前性能改进主要依赖网络爬取的海量噪声图文对,这种监督信号存在固有缺陷。本文提出BLIP——新型VLP框架,可灵活迁移至视觉语言理解与生成双任务。通过"描述生成-去噪过滤"的协同机制,BLIP有效利用了噪声网络数据:生成器合成描述文本,过滤器剔除低质量样本。我们在图像文本检索(平均召回率@1提升2.7%)、图像描述生成(CIDEr指标提升2.8%)和视觉问答(VQA分数提升1.6%)等任务上实现SOTA。BLIP在零样本迁移至视频语言任务时也展现出强大泛化能力。已开源代码、模型及数据集。
使用指南
本模型支持条件/非条件图像描述生成
PyTorch模型调用
CPU环境运行
点击展开
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
text = "一张摄影作品,内容是"
inputs = processor(raw_image, text, return_tensors="pt")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
inputs = processor(raw_image, return_tensors="pt")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
GPU环境运行
全精度模式
点击展开
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
text = "一张摄影作品,内容是"
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
inputs = processor(raw_image, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
半精度模式(float16)
点击展开
import torch
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
text = "一张摄影作品,内容是"
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
>>> 一位女士带着她的狗坐在海滩上
伦理考量
本版本仅供学术论文研究使用。我们的模型、数据集和代码并非为所有下游场景设计或评估。强烈建议用户在部署前评估并解决可能涉及的准确性、安全性和公平性问题。我们建议用户充分考虑AI的通用局限性,遵守适用法律,在选择应用场景时遵循最佳实践——特别是可能显著影响人类生活、权利或安全的高风险场景。具体使用准则请参考我们的《可接受使用政策》和《AI使用政策》。
引用信息
@misc{https://doi.org/10.48550/arxiv.2201.12086,
doi = {10.48550/ARXIV.2201.12086},
url = {https://arxiv.org/abs/2201.12086},
author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
keywords = {计算机视觉与模式识别(cs.CV), 计算机与信息科学, 计算机与信息科学},
title = {BLIP:通过语言-图像联合预训练实现统一视觉语言理解与生成},
publisher = {arXiv},
year = {2022},
copyright = {知识共享署名4.0国际许可协议}
}