库名称:transformers
许可证:cc-by-nc-4.0
基础模型:MCG-NJU/videomae-base
标签:
- 训练生成
指标:
- 准确率
模型索引:
- 名称:videomae-base-finetuned-ucf101-subset
结果:[]
videomae-base-finetuned-ucf101-subset
该模型是基于MCG-NJU/videomae-base在未知数据集上微调的版本。
在评估集上取得了以下结果:
模型描述
需要更多信息
预期用途与限制
需要更多信息
训练与评估数据
需要更多信息
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率:5e-05
- 训练批次大小:64
- 评估批次大小:64
- 随机种子:42
- 优化器:使用adamw_torch,参数为betas=(0.9,0.999)、epsilon=1e-08,无额外优化器参数
- 学习率调度器类型:线性
- 学习率预热比例:0.1
- 训练步数:1920
训练结果
训练损失 |
周期 |
步数 |
验证损失 |
准确率 |
0.4529 |
0.0083 |
16 |
1.0265 |
0.7074 |
0.2409 |
1.0083 |
32 |
0.8731 |
0.7630 |
0.21 |
2.0083 |
48 |
0.8199 |
0.7481 |
0.149 |
3.0083 |
64 |
0.8314 |
0.7593 |
0.1131 |
4.0083 |
80 |
0.7753 |
0.7741 |
0.1177 |
5.0083 |
96 |
0.7645 |
0.7667 |
0.1106 |
6.0083 |
112 |
0.8109 |
0.7407 |
0.1346 |
7.0083 |
128 |
0.6663 |
0.7963 |
0.1054 |
8.0083 |
144 |
0.7931 |
0.7852 |
0.1302 |
9.0083 |
160 |
0.8380 |
0.7593 |
0.1201 |
10.0083 |
176 |
0.7758 |
0.7704 |
0.0992 |
11.0083 |
192 |
0.9272 |
0.7259 |
0.11 |
12.0083 |
208 |
0.8363 |
0.7667 |
0.122 |
13.0083 |
224 |
0.6285 |
0.8111 |
0.1336 |
14.0083 |
240 |
0.6990 |
0.8185 |
0.0996 |
15.0083 |
256 |
0.7357 |
0.8037 |
0.0711 |
16.0083 |
272 |
0.6621 |
0.8222 |
0.0839 |
17.0083 |
288 |
0.7744 |
0.7815 |
0.0865 |
18.0083 |
304 |
0.6456 |
0.8222 |
0.0607 |
19.0083 |
320 |
0.7278 |
0.7963 |
0.0672 |
20.0083 |
336 |
0.7863 |
0.8 |
0.0575 |
21.0083 |
352 |
0.6789 |
0.8185 |
0.0527 |
22.0083 |
368 |
0.6201 |
0.8148 |
0.0856 |
23.0083 |
384 |
0.6439 |
0.8 |
0.0621 |
24.0083 |
400 |
0.8606 |
0.7704 |
0.0725 |
25.0083 |
416 |
0.6359 |
0.8222 |
0.0659 |
26.0083 |
432 |
0.6513 |
0.8259 |
0.036 |
27.0083 |
448 |
0.6300 |
0.8111 |
0.0337 |
28.0083 |
464 |
0.6411 |
0.8444 |
0.0249 |
29.0083 |
480 |
0.5657 |
0.8593 |
0.0236 |
30.0083 |
496 |
0.5585 |
0.8296 |
0.0488 |
31.0083 |
512 |
0.6617 |
0.8148 |
0.0327 |
32.0083 |
528 |
0.5680 |
0.8407 |
0.0367 |
33.0083 |
544 |
0.7030 |
0.7963 |
0.0226 |
34.0083 |
560 |
0.8866 |
0.7593 |
0.0277 |
35.0083 |
576 |
0.8434 |
0.7963 |
0.0136 |
36.0083 |
592 |
0.7818 |
0.7778 |
0.017 |
37.0083 |
608 |
0.7851 |
0.7593 |
0.0391 |
38.0083 |
624 |
1.0256 |
0.7481 |
0.0211 |
39.0083 |
640 |
0.9225 |
0.7593 |
0.0322 |
40.0083 |
656 |
0.7322 |
0.7926 |
0.0203 |
41.0083 |
672 |
0.7956 |
0.7852 |
0.0223 |
42.0083 |
688 |
0.8495 |
0.7704 |
0.0228 |
43.0083 |
704 |
0.6640 |
0.8259 |
0.0115 |
44.0083 |
720 |
0.9645 |
0.7593 |
0.0222 |
45.0083 |
736 |
0.6595 |
0.8333 |
0.0165 |
46.0083 |
752 |
0.7120 |
0.7963 |
0.0165 |
47.0083 |
768 |
0.8027 |
0.8 |
0.0166 |
48.0083 |
784 |
0.8485 |
0.7963 |
0.0097 |
49.0083 |
800 |
0.8504 |
0.7926 |
0.0257 |
50.0083 |
816 |
0.7934 |
0.7963 |
0.0172 |
51.0083 |
832 |
0.7562 |
0.8037 |
0.0064 |
52.0083 |
848 |
0.7097 |
0.8111 |
0.0052 |
53.0083 |
864 |
0.7537 |
0.7963 |
0.012 |
54.0083 |
880 |
0.7386 |
0.8074 |
0.0174 |
55.0083 |
896 |
0.6894 |
0.8222 |
0.0151 |
56.0083 |
912 |
0.9360 |
0.7667 |
0.0081 |
57.0083 |
928 |
0.7102 |
0.8222 |
0.0142 |
58.0083 |
944 |
0.7866 |
0.8111 |
0.0169 |
59.0083 |
960 |
0.6516 |
0.8370 |
0.0149 |
60.0083 |
976 |
1.0039 |
0.7556 |
0.0106 |
61.0083 |
992 |
0.6570 |
0.8407 |
0.005 |
62.0083 |
1008 |
0.7252 |
0.8037 |
0.0115 |
63.0083 |
1024 |
0.6913 |
0.8333 |
0.0059 |
64.0083 |
1040 |
0.6858 |
0.8481 |
0.0225 |
65.0083 |
1056 |
0.7342 |
0.8148 |
0.0151 |
66.0083 |
1072 |
0.6860 |
0.8259 |
0.0098 |
67.0083 |
1088 |
0.7041 |
0.8296 |
0.0097 |
68.0083 |
1104 |
0.7321 |
0.8185 |
0.014 |
69.0083 |
1120 |
0.6251 |
0.8481 |
0.0252 |
70.0083 |
1136 |
0.6771 |
0.8370 |
0.0052 |
71.0083 |
1152 |
0.7527 |
0.8 |
0.0189 |
72.0083 |
1168 |
0.6936 |
0.8222 |
0.0038 |
73.0083 |
1184 |
0.6541 |
0.8296 |
0.0027 |
74.0083 |
1200 |
0.7257 |
0.8074 |
0.0028 |
75.0083 |
1216 |
0.6686 |
0.8185 |
0.0034 |
76.0083 |
1232 |
0.6239 |
0.8370 |
0.0111 |
77.0083 |
1248 |
0.7719 |
0.7926 |
0.009 |
78.0083 |
1264 |
0.6882 |
0.8185 |
0.0038 |
79.0083 |
1280 |
0.7040 |
0.8222 |
0.005 |
80.0083 |
1296 |
0.6955 |
0.8370 |
0.003 |
81.0083 |
1312 |
0.6797 |
0.8481 |
0.0035 |
82.0083 |
1328 |
0.6548 |
0.8370 |
0.0029 |
83.0083 |
1344 |
0.6407 |
0.8370 |
0.0131 |
84.0083 |
1360 |
0.6152 |
0.8407 |
0.0026 |
85.0083 |
1376 |
0.5863 |
0.8444 |
0.0048 |
86.0083 |
1392 |
0.6048 |
0.8519 |
0.0032 |
87.0083 |
1408 |
0.6064 |
0.8481 |
0.0067 |
88.0083 |
1424 |
0.6492 |
0.8370 |
0.0077 |
89.0083 |
1440 |
0.7520 |
0.7852 |
0.012 |
90.0083 |
1456 |
0.7662 |
0.8037 |
0.0092 |
91.0083 |
1472 |
0.7106 |
0.8074 |
0.0034 |
92.0083 |
1488 |
0.7589 |
0.8111 |
0.0042 |
93.0083 |
1504 |
0.6382 |
0.8296 |
0.0053 |
94.0083 |
1520 |
0.6153 |
0.8519 |
0.0038 |
95.0083 |
1536 |
0.6227 |
0.8370 |
0.002 |
96.0083 |
1552 |
0.6424 |
0.8407 |
0.0063 |
97.0083 |
1568 |
0.6215 |
0.8481 |
0.0021 |
98.0083 |
1584 |
0.6355 |
0.8333 |
0.0022 |
99.0083 |
1600 |
0.6141 |
0.8407 |
0.002 |
100.0083 |
1616 |
0.5682 |
0.8519 |
0.0058 |
101.0083 |
1632 |
0.5804 |
0.8519 |
0.0027 |
102.0083 |
1648 |
0.5724 |
0.8556 |
0.0026 |
103.0083 |
1664 |
0.5557 |
0.8630 |
0.0016 |
104.0083 |
1680 |
0.5465 |
0.8593 |
0.0018 |
105.0083 |
1696 |
0.5636 |
0.8630 |
0.0022 |
106.0083 |
1712 |
0.5932 |
0.8519 |
0.0018 |
107.0083 |
1728 |
0.5884 |
0.8593 |
0.0018 |
108.0083 |
1744 |
0.5960 |
0.8519 |
0.0041 |
109.0083 |
1760 |
0.5984 |
0.8556 |
0.0019 |
110.0083 |
1776 |
0.6015 |
0.8519 |
0.0031 |
111.0083 |
1792 |
0.5941 |
0.8593 |
0.0056 |
112.0083 |
1808 |
0.5957 |
0.8593 |
0.0014 |
113.0083 |
1824 |
0.6007 |
0.8593 |
0.0145 |
114.0083 |
1840 |
0.6138 |
0.8444 |
0.002 |
115.0083 |
1856 |
0.6205 |
0.8407 |
0.0046 |
116.0083 |
1872 |
0.6194 |
0.8444 |
0.0018 |
117.0083 |
1888 |
0.6189 |
0.8444 |
0.0023 |
118.0083 |
1904 |
0.6391 |
0.8444 |
0.0021 |
119.0083 |
1920 |
0.6227 |
0.8481 |
框架版本
- Transformers 4.48.0
- Pytorch 2.5.1+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0