license: agpl-3.0
tags:
- 目标检测
- 计算机视觉
- yolov10
- pypi
datasets:
- detection-datasets/coco
模型描述
YOLOv10:可训练的无额外开销方案为实时目标检测器树立新标杆
论文代码库:YOLOv10论文实现
安装指南
pip install supervision git+https://github.com/THU-MIG/yolov10.git
YOLOv10推理示例
from ultralytics import YOLOv10
import supervision as sv
import cv2
MODEL_PATH = 'yolov10n.pt'
IMAGE_PATH = 'dog.jpeg'
model = YOLOv10(MODEL_PATH)
image = cv2.imread(IMAGE_PATH)
results = model(source=image, conf=0.25, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
box_annotator = sv.BoxAnnotator()
category_dict = {
0: '人', 1: '自行车', 2: '汽车', 3: '摩托车', 4: '飞机', 5: '公交车',
6: '火车', 7: '卡车', 8: '船', 9: '交通灯', 10: '消防栓',
11: '停车标志', 12: '停车计时器', 13: '长椅', 14: '鸟', 15: '猫',
16: '狗', 17: '马', 18: '羊', 19: '牛', 20: '大象', 21: '熊',
22: '斑马', 23: '长颈鹿', 24: '背包', 25: '雨伞', 26: '手提包',
27: '领带', 28: '行李箱', 29: '飞盘', 30: '滑雪板', 31: '滑雪单板',
32: '运动球', 33: '风筝', 34: '棒球棒', 35: '棒球手套',
36: '滑板', 37: '冲浪板', 38: '网球拍', 39: '瓶子',
40: '红酒杯', 41: '杯子', 42: '叉子', 43: '刀', 44: '勺子', 45: '碗',
46: '香蕉', 47: '苹果', 48: '三明治', 49: '橙子', 50: '西兰花',
51: '胡萝卜', 52: '热狗', 53: '披萨', 54: '甜甜圈', 55: '蛋糕',
56: '椅子', 57: '沙发', 58: '盆栽', 59: '床', 60: '餐桌',
61: '马桶', 62: '电视', 63: '笔记本电脑', 64: '鼠标', 65: '遥控器', 66: '键盘',
67: '手机', 68: '微波炉', 69: '烤箱', 70: '烤面包机', 71: '水槽',
72: '冰箱', 73: '书', 74: '时钟', 75: '花瓶', 76: '剪刀',
77: '泰迪熊', 78: '吹风机', 79: '牙刷'
}
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(
image.copy(), detections=detections, labels=labels
)
cv2.imwrite('annotated_dog.jpeg', annotated_image)
BibTeX引用信息
@misc{wang2024yolov10,
title={YOLOv10:实时端到端目标检测},
author={王傲、陈辉、刘立浩、陈凯、林子佳、韩军功、丁贵广},
year={2024},
eprint={2405.14458},
archivePrefix={arXiv},
primaryClass={cs.CV}
}