Rtdetr R50vd Russia Plate Detector
基于RT-DETR架构的俄罗斯车牌检测模型,支持普通车牌和警用车牌的分类识别
下载量 19
发布时间 : 10/24/2024
模型简介
该模型专门用于检测和分类俄罗斯机动车车牌,当前支持识别普通车牌(n_p)和警用车牌(p_p)两种类型。基于PekingU/rtdetr_r50vd_coco_o365模型微调,在车牌检测任务上表现出色。
模型特点
高精度车牌检测
在评估集上达到0.8829的平均精度(mAP),车牌检测准确率高
多类型分类
支持普通车牌和警用车牌两种类型的分类识别
多尺度目标检测
能够有效检测不同尺寸的车牌,从小型到大型目标均有良好表现
高效推理
基于RT-DETR架构,实现实时目标检测能力
模型能力
俄罗斯车牌检测
车牌类型分类
图像目标检测
多尺度目标识别
使用案例
交通管理
智能交通监控
用于交通监控系统中自动识别车辆牌照
可实时检测并分类通过的车辆牌照
停车场管理
自动识别进出停车场的车辆牌照
提高停车场管理效率,减少人工干预
公共安全
警用车辆识别
识别警用车辆的特殊牌照
有助于快速识别警用车辆,提高应急响应效率
🚀 RT-DETR俄罗斯车牌检测及类型分类
本模型是一个用于俄罗斯车牌检测及类型分类的模型,基于预训练模型微调而来,能够准确识别普通车牌和警察车牌,在评估集上取得了良好的检测效果。
🚀 快速开始
本模型是 PekingU/rtdetr_r50vd_coco_o365 在未知数据集上的微调版本。 它在评估集上取得了以下结果:
- 损失值:4.1673
- 平均精度均值(mAP):0.8829
- mAP@50:0.9858
- mAP@75:0.9736
- 车牌及其类型的 mAP:-1.0
- 大型目标 mAP:0.9689
- 中型目标 mAP:0.9125
- 普通车牌 mAP:0.857
- 警察车牌 mAP:0.9087
- 小型目标 mAP:0.696
- mAR@1:0.8686
- mAR@10:0.9299
- mAR@100:0.9357
- mAR@100 车牌及其类型:-1.0
- mAR@100 普通车牌:0.9169
- mAR@100 警察车牌:0.9545
- 大型目标 mAR:0.9844
- 中型目标 mAR:0.958
- 小型目标 mAR:0.8354
✨ 主要特性
- 精准检测:能够准确检测俄罗斯车牌,并区分普通车牌和警察车牌两种类型。
- 微调优化:基于强大的预训练模型进行微调,在特定数据集上表现出色。
💻 使用示例
基础用法
from transformers import AutoModelForObjectDetection, AutoImageProcessor
import torch
import supervision as sv
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForObjectDetection.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector').to(DEVICE)
processor = AutoImageProcessor.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector')
path = 'path/to/image'
image = Image.open(path)
inputs = processor(image, return_tensors="pt").to(DEVICE)
with torch.no_grad():
outputs = model(**inputs)
w, h = image.size
results = processor.post_process_object_detection(
outputs, target_sizes=[(h, w)], threshold=0.3)
detections = sv.Detections.from_transformers(results[0]).with_nms(0.3)
labels = [
model.config.id2label[class_id]
for class_id
in detections.class_id
]
annotated_image = image.copy()
annotated_image = sv.BoundingBoxAnnotator().annotate(annotated_image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels=labels)
grid = sv.create_tiles(
[annotated_image],
grid_size=(1, 1),
single_tile_size=(512, 512),
tile_padding_color=sv.Color.WHITE,
tile_margin_color=sv.Color.WHITE
)
sv.plot_image(grid, size=(10, 10))
📚 详细文档
模型描述
该模型用于检测俄罗斯汽车的车牌,目前有两个类别:n_p(普通车牌)和 p_p(警察车牌)。
预期用途和限制
以下是使用该模型的示例代码,展示了如何进行车牌检测和可视化。
训练和评估数据
模型在自定义数据集上进行训练,数据集链接为:https://universe.roboflow.com/testcarplate/russian-license-plates-classification-by-this-type
训练过程
训练超参数
训练过程中使用了以下超参数:
属性 | 详情 |
---|---|
学习率 | 5e-05 |
训练批次大小 | 32 |
评估批次大小 | 8 |
随机种子 | 42 |
优化器 | 使用 adamw_torch,β1=0.9,β2=0.999,ε=1e-08,无额外优化器参数 |
学习率调度器类型 | 线性 |
学习率调度器热身步数 | 300 |
训练轮数 | 20 |
训练结果
训练损失 | 轮数 | 步数 | 验证损失 | mAP | mAP@50 | mAP@75 | 车牌及其类型的 mAP | 大型目标 mAP | 中型目标 mAP | 普通车牌 mAP | 警察车牌 mAP | 小型目标 mAP | mAR@1 | mAR@10 | mAR@100 | mAR@100 车牌及其类型 | mAR@100 普通车牌 | mAR@100 警察车牌 | 大型目标 mAR | 中型目标 mAR | 小型目标 mAR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
无日志记录 | 1.0 | 109 | 64.6127 | 0.035 | 0.0558 | 0.0379 | -1.0 | 0.0039 | 0.0663 | 0.0191 | 0.0508 | 0.0071 | 0.1523 | 0.3009 | 0.3361 | -1.0 | 0.3179 | 0.3543 | 0.7625 | 0.3788 | 0.1157 |
无日志记录 | 2.0 | 218 | 15.4008 | 0.8237 | 0.9418 | 0.9327 | -1.0 | 0.893 | 0.879 | 0.7945 | 0.8529 | 0.4319 | 0.8203 | 0.8924 | 0.9018 | -1.0 | 0.8766 | 0.9269 | 0.9656 | 0.9324 | 0.7653 |
无日志记录 | 3.0 | 327 | 9.4050 | 0.8439 | 0.9566 | 0.9479 | -1.0 | 0.9439 | 0.8908 | 0.8158 | 0.872 | 0.5171 | 0.8416 | 0.908 | 0.9144 | -1.0 | 0.9002 | 0.9286 | 0.9781 | 0.9368 | 0.8051 |
无日志记录 | 4.0 | 436 | 7.9164 | 0.8493 | 0.9665 | 0.9543 | -1.0 | 0.9567 | 0.8903 | 0.8338 | 0.8648 | 0.5581 | 0.8481 | 0.9159 | 0.9267 | -1.0 | 0.9173 | 0.936 | 0.975 | 0.949 | 0.8185 |
70.2867 | 5.0 | 545 | 6.8177 | 0.8525 | 0.9723 | 0.9602 | -1.0 | 0.9521 | 0.8918 | 0.8234 | 0.8816 | 0.6025 | 0.8438 | 0.9214 | 0.9279 | -1.0 | 0.9181 | 0.9378 | 0.975 | 0.9492 | 0.8211 |
70.2867 | 6.0 | 654 | 6.0182 | 0.854 | 0.9744 | 0.9619 | -1.0 | 0.9574 | 0.8912 | 0.8251 | 0.8829 | 0.6123 | 0.8438 | 0.9176 | 0.927 | -1.0 | 0.9137 | 0.9403 | 0.9781 | 0.9503 | 0.8163 |
70.2867 | 7.0 | 763 | 5.4024 | 0.8731 | 0.9772 | 0.9667 | -1.0 | 0.9635 | 0.9113 | 0.8462 | 0.9001 | 0.6376 | 0.8608 | 0.9275 | 0.9336 | -1.0 | 0.9202 | 0.9471 | 0.9781 | 0.956 | 0.8266 |
70.2867 | 8.0 | 872 | 5.2224 | 0.8726 | 0.9809 | 0.9767 | -1.0 | 0.9582 | 0.9069 | 0.8487 | 0.8966 | 0.6472 | 0.8625 | 0.9265 | 0.9301 | -1.0 | 0.9137 | 0.9464 | 0.9875 | 0.9528 | 0.8232 |
70.2867 | 9.0 | 981 | 4.7844 | 0.8679 | 0.9821 | 0.9687 | -1.0 | 0.9574 | 0.9023 | 0.8451 | 0.8907 | 0.6382 | 0.8606 | 0.9213 | 0.9283 | -1.0 | 0.9119 | 0.9448 | 0.9844 | 0.952 | 0.8165 |
4.2466 | 10.0 | 1090 | 5.1437 | 0.8729 | 0.9816 | 0.9762 | -1.0 | 0.9577 | 0.9028 | 0.8448 | 0.901 | 0.6686 | 0.8605 | 0.9296 | 0.9359 | -1.0 | 0.9203 | 0.9514 | 0.9781 | 0.9567 | 0.8413 |
4.2466 | 11.0 | 1199 | 4.5169 | 0.8858 | 0.9828 | 0.9768 | -1.0 | 0.9707 | 0.9162 | 0.8628 | 0.9087 | 0.6734 | 0.8695 | 0.9264 | 0.931 | -1.0 | 0.9121 | 0.95 | 0.9781 | 0.9538 | 0.823 |
4.2466 | 12.0 | 1308 | 4.5858 | 0.8813 | 0.9865 | 0.9744 | -1.0 | 0.9623 | 0.9126 | 0.8585 | 0.9041 | 0.6815 | 0.8671 | 0.9308 | 0.9355 | -1.0 | 0.9185 | 0.9526 | 0.9812 | 0.9583 | 0.8308 |
4.2466 | 13.0 | 1417 | 4.5345 | 0.8778 | 0.9843 | 0.9726 | -1.0 | 0.957 | 0.9101 | 0.8526 | 0.903 | 0.6754 | 0.8628 | 0.9281 | 0.9335 | -1.0 | 0.9158 | 0.9512 | 0.9812 | 0.9557 | 0.8314 |
3.589 | 14.0 | 1526 | 4.3003 | 0.8885 | 0.9857 | 0.9759 | -1.0 | 0.9656 | 0.9189 | 0.8642 | 0.9128 | 0.6957 | 0.8724 | 0.9334 | 0.9375 | -1.0 | 0.9194 | 0.9555 | 0.9875 | 0.959 | 0.8375 |
3.589 | 15.0 | 1635 | 4.3999 | 0.8819 | 0.986 | 0.9741 | -1.0 | 0.9606 | 0.9118 | 0.8575 | 0.9064 | 0.6892 | 0.8659 | 0.9283 | 0.9336 | -1.0 | 0.9137 | 0.9534 | 0.9844 | 0.9566 | 0.8245 |
3.589 | 16.0 | 1744 | 4.2719 | 0.8796 | 0.986 | 0.9726 | -1.0 | 0.9661 | 0.9093 | 0.8543 | 0.905 | 0.6914 | 0.8649 | 0.927 | 0.9313 | -1.0 | 0.9121 | 0.9505 | 0.9875 | 0.9543 | 0.8266 |
3.589 | 17.0 | 1853 | 4.2497 | 0.8838 | 0.9845 | 0.9733 | -1.0 | 0.9656 | 0.9141 | 0.8599 | 0.9077 | 0.6997 | 0.8678 | 0.9295 | 0.9352 | -1.0 | 0.9141 | 0.9562 | 0.9812 | 0.958 | 0.832 |
3.589 | 18.0 | 1962 | 4.2807 | 0.8829 | 0.9855 | 0.9754 | -1.0 | 0.9673 | 0.9121 | 0.8558 | 0.9099 | 0.6964 | 0.8683 | 0.9286 | 0.9337 | -1.0 | 0.9126 | 0.9548 | 0.9844 | 0.9555 | 0.8357 |
3.2442 | 19.0 | 2071 | 4.1978 | 0.8835 | 0.9861 | 0.9748 | -1.0 | 0.9675 | 0.9121 | 0.8559 | 0.911 | 0.6932 | 0.8691 | 0.9272 | 0.9336 | -1.0 | 0.9134 | 0.9538 | 0.9844 | 0.9557 | 0.8337 |
3.2442 | 20.0 | 2180 | 4.1673 | 0.8829 | 0.9858 | 0.9736 | -1.0 | 0.9689 | 0.9125 | 0.857 | 0.9087 | 0.696 | 0.8686 | 0.9299 | 0.9357 | -1.0 | 0.9169 | 0.9545 | 0.9844 | 0.958 | 0.8354 |
框架版本
- Transformers 4.46.0.dev0
- Pytorch 2.5.0+cu124
- Tokenizers 0.20.1
📄 许可证
本项目采用 Apache-2.0 许可证。
Table Transformer Detection
MIT
基于DETR架构的表格检测模型,专门用于从非结构化文档中提取表格
目标检测
Transformers

T
microsoft
2.6M
349
Grounding Dino Base
Apache-2.0
Grounding DINO是一个开放集目标检测模型,通过结合DINO检测器与文本编码器实现零样本目标检测能力。
目标检测
Transformers

G
IDEA-Research
1.1M
87
Grounding Dino Tiny
Apache-2.0
Grounding DINO是一个结合DINO检测器与接地预训练的开放集目标检测模型,能够实现零样本目标检测。
目标检测
Transformers

G
IDEA-Research
771.67k
74
Detr Resnet 50
Apache-2.0
DETR是一个基于Transformer架构的端到端目标检测模型,使用ResNet-50作为骨干网络,在COCO数据集上训练。
目标检测
Transformers

D
facebook
505.27k
857
Detr Resnet 101
Apache-2.0
DETR是一个使用Transformer架构的端到端目标检测模型,采用ResNet-101作为骨干网络,在COCO数据集上训练。
目标检测
Transformers

D
facebook
262.94k
119
Detr Doc Table Detection
Apache-2.0
基于DETR架构的文档表格检测模型,用于检测文档中的有边框和无边框表格
目标检测
Transformers

D
TahaDouaji
233.45k
59
Yolos Small
Apache-2.0
基于视觉Transformer(ViT)的目标检测模型,使用DETR损失函数训练,在COCO数据集上表现优异。
目标检测
Transformers

Y
hustvl
154.46k
63
Yolos Tiny
Apache-2.0
基于COCO 2017目标检测数据集微调的YOLOS模型,使用视觉Transformer架构实现高效目标检测。
目标检测
Transformers

Y
hustvl
144.58k
266
Rtdetr R50vd Coco O365
Apache-2.0
RT-DETR是首个实时端到端目标检测器,通过高效混合编码器和不确定性最小化查询选择机制,在COCO数据集上达到53.1% AP,108 FPS的性能。
目标检测
Transformers 英语

R
PekingU
111.17k
11
Rtdetr R101vd Coco O365
Apache-2.0
首个实时端到端目标检测器,基于Transformer架构,消除非极大值抑制需求,在速度与精度上超越YOLO系列
目标检测
Transformers 英语

R
PekingU
106.81k
7
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98
智启未来,您的人工智能解决方案智库
简体中文