license: mit
library_name: transformers
pipeline_tag: image-to-text
[免安装!] 通过Hugging Face AutoModel快速启动
无需安装此GitHub仓库。请确保使用4.45.0版本的Transformers包(pip install transformers==4.45.0
)。
使用q-sit进行图像质量解读对话:
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
model_id = "zhangzicheng/q-sit-mini"
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "这张图中人物的清晰度如何?"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
raw_image = Image.open(requests.get("https://github.com/Q-Future/Q-SiT/blob/main/44009500.jpg?raw=true",stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True).split("assistant")[-1])
使用q-sit进行图像质量评分:
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration, AutoTokenizer
import numpy as np
def wa5(logits):
logprobs = np.array([logits["Excellent"], logits["Good"], logits["Fair"], logits["Poor"], logits["Bad"]])
probs = np.exp(logprobs) / np.sum(np.exp(logprobs))
return np.inner(probs, np.array([1, 0.75, 0.5, 0.25, 0]))
model_id = "zhangzicheng/q-sit-mini"
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
toks = ["Excellent", "Good", "Fair", "Poor", "Bad"]
ids_ = [id_[0] for id_ in tokenizer(toks)["input_ids"]]
print("评分标签ID:", ids_)
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "假设你是图像质量评估专家。\n请从以下五个等级中选择评分:Excellent(优)、Good(良)、Fair(中)、Poor(差)、Bad(劣)(从高到低排列)。\n你会如何评价这张图像的质量?"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
raw_image = Image.open(requests.get("https://github.com/Q-Future/Q-SiT/blob/main/44009500.jpg?raw=true",stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)
prefix_text = "该图像质量为"
prefix_ids = tokenizer(prefix_text, return_tensors="pt")["input_ids"].to(0)
inputs["input_ids"] = torch.cat([inputs["input_ids"], prefix_ids], dim=-1)
inputs["attention_mask"] = torch.ones_like(inputs["input_ids"])
output = model.generate(
**inputs,
max_new_tokens=1,
output_logits=True,
return_dict_in_generate=True,
)
last_logits = output.logits[-1][0]
logits_dict = {tok: last_logits[id_].item() for tok, id_ in zip(toks, ids_)}
weighted_score = wa5(logits_dict)
print("加权平均得分:", weighted_score)
如需在数据集上测试q-sit,请参考评估脚本。
该模型论文详见此处,代码库位于https://github.com/Q-Future/Q-SiT。