PickScore v1 模型卡
该模型是一个针对文本生成图像的评分函数。它接收提示词和生成图像作为输入,并输出评分分数。
可作为通用评分函数使用,适用于人类偏好预测、模型评估、图像排序等多种任务。
更多细节请参阅我们的论文《Pick-a-Pic:文本到图像生成的用户偏好开放数据集》(https://arxiv.org/abs/2305.01569)。
模型详情
模型描述
本模型基于CLIP-H模型,使用Pick-a-Pic数据集进行微调训练。
模型来源 [可选]
快速开始
使用以下代码快速体验模型:
from transformers import AutoProcessor, AutoModel
device = "cuda"
processor_name_or_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
model_pretrained_name_or_path = "yuvalkirstain/PickScore_v1"
processor = AutoProcessor.from_pretrained(processor_name_or_path)
model = AutoModel.from_pretrained(model_pretrained_name_or_path).eval().to(device)
def calc_probs(prompt, images):
image_inputs = processor(
images=images,
padding=True,
truncation=True,
max_length=77,
return_tensors="pt",
).to(device)
text_inputs = processor(
text=prompt,
padding=True,
truncation=True,
max_length=77,
return_tensors="pt",
).to(device)
with torch.no_grad():
image_embs = model.get_image_features(**image_inputs)
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
text_embs = model.get_text_features(**text_inputs)
text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True)
scores = model.logit_scale.exp() * (text_embs @ image_embs.T)[0]
probs = torch.softmax(scores, dim=-1)
return probs.cpu().tolist()
pil_images = [Image.open("my_amazing_images/1.jpg"), Image.open("my_amazing_images/2.jpg")]
prompt = "fantastic, increadible prompt"
print(calc_probs(prompt, pil_images))
训练详情
训练数据
本模型使用Pick-a-Pic数据集进行训练。
训练流程
待补充 - 添加论文细节。
引用 [可选]
若本工作对您有帮助,请引用:
@inproceedings{Kirstain2023PickaPicAO,
title={Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation},
author={Yuval Kirstain and Adam Polyak and Uriel Singer and Shahbuland Matiana and Joe Penna and Omer Levy},
year={2023}
}
APA格式:
[需要补充更多信息]