标签:
- 剪辑
- siglip
库名称: open_clip
管道标签: 零样本图像分类
许可证: apache-2.0
数据集:
- webli
ViT-L-16-SigLIP-384 模型卡
一个在WebLI上训练的SigLIP(用于语言-图像预训练的Sigmoid损失)模型。
此模型已从Big Vision中的原始JAX检查点转换为PyTorch。这些权重可在OpenCLIP(图像+文本)和timm(仅图像)中使用。
模型详情
- 模型类型: 对比图像-文本,零样本图像分类。
- 原始来源: https://github.com/google-research/big_vision
- 数据集: WebLI
- 论文:
- 用于语言图像预训练的Sigmoid损失: https://arxiv.org/abs/2303.15343
模型使用
使用OpenCLIP
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer
model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-L-16-SigLIP-384')
tokenizer = get_tokenizer('hf-hub:timm/ViT-L-16-SigLIP-384')
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)
labels_list = ["一只狗", "一只猫", "一个甜甜圈", "一个贝奈特饼"]
text = tokenizer(labels_list, context_length=model.context_length)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features = F.normalize(image_features, dim=-1)
text_features = F.normalize(text_features, dim=-1)
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
print("标签概率: ", zipped_list)
使用timm
(用于图像嵌入)
from urllib.request import urlopen
from PIL import Image
import timm
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_large_patch16_siglip_384',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(image).unsqueeze(0))
引用
@article{zhai2023sigmoid,
title={Sigmoid loss for language image pre-training},
author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas},
journal={arXiv preprint arXiv:2303.15343},
year={2023}
}
@misc{big_vision,
author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
title = {Big Vision},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/google-research/big_vision}}
}