数据集:
- mlfoundations/datacomp_1b
许可证: mit
标签:
- pytorch_model_hub_mixin
- model_hub_mixin
任务类型: zero-shot-image-classification
库名称: prolip
基于DataComp 1B预训练的ViT-B/16 ProLIP官方实现
- 本权重为概率语言-图像预训练(ProLIP)方法预训练的ViT-B/16模型
- 预训练数据集
- DataComp 1B / 实际训练样本12.8B
概览
- 论文: https://arxiv.org/abs/2410.18857
- GitHub: https://github.com/naver-ai/prolip
- 更多模型请访问: https://huggingface.co/collections/SanghyukChun/prolip-6712595dfc87fd8597350291
性能概览
- 零样本ImageNet-1k top-1准确率: 74.6%
- 零样本ImageNet分布偏移: 63.0%
- 零样本VTAB性能: 63.7%
- 零样本检索性能: 59.6%
- 38项任务平均零样本性能: 63.3%
import requests
from PIL import Image
import torch
from prolip.model import ProLIPHF
from transformers import CLIPProcessor
from prolip.tokenizer import HFTokenizer
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
model = ProLIPHF.from_pretrained("SanghyukChun/ProLIP-ViT-B-16-DC-1B-12_8M")
tokenizer = HFTokenizer("timm/ViT-B-16-SigLIP", context_length=64, clean="canonicalize")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt", padding=True)
texts = ["两只猫躺在粉色毯子上", "暴雨中男子涉水过马路", "照片"]
texts = tokenizer(texts)
outputs = model(image=inputs["pixel_values"], text=texts)
l2_logit = outputs["image_features"]["mean"] @ outputs["text_features"]["mean"].T
i_unc = torch.exp(outputs["image_features"]["std"]).sum(dim=-1)
t_unc = torch.exp(outputs["text_features"]["std"]).sum(dim=-1)
csd_logit = l2_logit - 0.5 * t_unc
csd_logit2 = l2_logit.T - 0.5 * i_unc
print("仅均值图像-文本对数概率(L2距离):", l2_logit)
print("不确定性感知图像-文本对数概率(CSD):", csd_logit)
print("不确定性感知文本-图像对数概率(CSD):", csd_logit2.T)
print("图像不确定性: ", i_unc)
print("文本不确定性: ", t_unc)
引用文献
@inproceedings{chun2025prolip,
title={概率语言-图像预训练},
author={Chun, Sanghyuk and Kim, Wonjae and Park, Song and Yun, Sangdoo},
year={2025},
booktitle={国际学习表征会议(ICLR)},
}
@inproceedings{chun2025longprolip,
title={LongProLIP: 支持长文本的概率视觉语言模型},
author={Chun, Sanghyuk and Yun, Sangdoo},
year={2025},
booktitle={ICLR基础模型不确定性与幻觉量化研讨会},
}