许可证:apache-2.0
语言:
标签:
- 图像转视频
- LoRA
- Replicate平台
- 文本转视频
- 视频
- 视频生成
基础模型:"Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
管道标签:文本转视频
示例:
- 输入文本:"CYB77风格,夜晚在城市中极速驾驶汽车"
输出视频链接:https://replicate.delivery/xezq/ByLxPmW5pz6cKNFgMvoN34o0m7MecRlYeToujGw97KlvtKbUA/R8_Wan_00001.mp4
- 输入文本:"CYB77风格,夜晚在城市中极速驾驶汽车"
输出视频链接:https://replicate.delivery/xezq/asl3HD14zJpjCV3WAefO5cMDOqyxKG2ZWIfN1dD9DRby4V2oA/R8_Wan_00001.mp4
触发词:CYB77
Wan 14B赛博朋克写实风(图像转视频)
关于此LoRA
这是专为Wan2.1 14B视频生成模型训练的LoRA适配器。
兼容Diffusers和ComfyUI框架,可加载至Wan2.1的文本转视频和图像转视频双模型。
训练平台:Replicate
训练工具链:https://replicate.com/ostris/wan-lora-trainer/train
触发词
使用CYB77
或"CYB77风格"激活视频生成特性。
使用指南
Replicate平台提供优化后的Wan2.1模型集合,兼顾速度与成本效益,支持本LoRA调用:
- https://replicate.com/collections/wan-video
- https://replicate.com/fofr/wan2.1-with-lora
通过Replicate API调用
import replicate
input = {
"prompt": "CYB77",
"image": "https://replicate.delivery/xezq/4BGR8w4ELvJfcqIG4KIF0Kr82JxtfQCM2xVAIUieSeifmTZjC/output_frame.jpg",
"lora_url": "https://huggingface.co/fofr/wan-14b-cyberpunk-realistic/resolve/main/wan-14b-i2v-cyberpunk-realistic-lora.safetensors"
}
output = replicate.run(
"fofr/wan2.1-with-lora:f83b84064136a38415a3aff66c326f94c66859b8ad7a2cb432e2822774f07b08",
model="14b",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.mp4", "wb") as file:
file.write(item.read())
Diffusers框架集成
pip install git+https://github.com/huggingface/diffusers.git
import torch
from diffusers.utils import export_to_video
from diffusers import AutoencoderKLWan, WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
flow_shift = 3.0
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
pipe.to("cuda")
pipe.load_lora_weights("fofr/wan-14b-cyberpunk-realistic")
pipe.enable_model_cpu_offload()
prompt = "CYB77"
negative_prompt = "明亮色调、过曝、静态模糊、细节缺失、字幕、艺术风格、绘画作品、静态图像、整体灰暗、劣质画面、JPEG压缩伪影、丑陋、残缺、多余手指、手部绘制粗糙、面部畸形、肢体变形、手指粘连、静止画面、杂乱背景、三腿生物、背景人群过多、倒行走路"
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
训练参数
- 训练步数:5000
- 学习率:0.0001
- LoRA秩:32
作品投稿
欢迎在社区讨论区分享您用此LoRA创作的视频作品。